Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Optical addressing of an individual erbium ion in silicon


The detection of electron spins associated with single defects in solids is a critical operation for a range of quantum information and measurement applications under development1,2,3,4,5,6,7,8,9. So far, it has been accomplished for only two defect centres in crystalline solids: phosphorus dopants in silicon, for which electrical read-out based on a single-electron transistor is used1, and nitrogen–vacancy centres in diamond, for which optical read-out is used4,5,6. A spin read-out fidelity of about 90 per cent has been demonstrated with both electrical read-out1 and optical read-out10,11; however, the thermal limitations of the former and the poor photon collection efficiency of the latter make it difficult to achieve the higher fidelities required for quantum information applications. Here we demonstrate a hybrid approach in which optical excitation is used to change the charge state (conditional on its spin state) of an erbium defect centre in a silicon-based single-electron transistor, and this change is then detected electrically. The high spectral resolution of the optical frequency-addressing step overcomes the thermal broadening limitation of the previous electrical read-out scheme, and the charge-sensing step avoids the difficulties of efficient photon collection. This approach could lead to new architectures for quantum information processing devices and could drastically increase the range of defect centres that can be exploited. Furthermore, the efficient electrical detection of the optical excitation of single sites in silicon represents a significant step towards developing interconnects between optical-based quantum computing and silicon technologies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Photoionization spectroscopy of an individual Er3+ ion.
Figure 2: The Zeeman effect of individual Er3+ ions.
Figure 3: The hyperfine structure of an individual Er3+ ion.


  1. 1

    Morello, A. et al. Single-shot readout of an electron spin in silicon. Nature 467, 687–691 (2010)

    CAS  ADS  Article  Google Scholar 

  2. 2

    Fuechsle, M. et al. A single-atom transistor. Nature Nanotechnol. 7, 242–246 (2012)

    CAS  ADS  Article  Google Scholar 

  3. 3

    Pla, J. J. et al. A single-atom electron spin qubit in silicon. Nature 489, 541–545 (2012)

    CAS  ADS  Article  Google Scholar 

  4. 4

    Gaebel, T. et al. Room-temperature coherent coupling of single spins in diamond. Nature Phys. 2, 408–413 (2006)

    CAS  ADS  Article  Google Scholar 

  5. 5

    Jiang, L. et al. Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae. Science 326, 267–272 (2009)

    CAS  ADS  Article  Google Scholar 

  6. 6

    Togan, E. et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730–734 (2010)

    CAS  ADS  Article  Google Scholar 

  7. 7

    Maze, J. R. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008)

    CAS  ADS  Article  Google Scholar 

  8. 8

    Morton, J. J. L., McCamey, D. R., Eriksson, M. A. & Lyon, S. A. Embracing the quantum limit in silicon computing. Nature 479, 345–353 (2011)

    CAS  ADS  Article  Google Scholar 

  9. 9

    Zwanenburg, F. A. et al. Silicon quantum electronics. Preprint at (2012)

  10. 10

    Robledo, L. et al. High-fidelity projective read-out of a solid-state spin quantum register. Nature 477, 574–578 (2011)

    CAS  ADS  Article  Google Scholar 

  11. 11

    Neumann, P. et al. Single-shot readout of a single nuclear spin. Science 329, 542–544 (2010)

    CAS  ADS  Article  Google Scholar 

  12. 12

    Steger, M. et al. Quantum information storage for over 180 s using donor spins in a 28Si “semiconductor vacuum”. Science 336, 1280–1283 (2012)

    CAS  ADS  Article  Google Scholar 

  13. 13

    Kenyon, A. J. Erbium in silicon. Semicond. Sci. Technol. 20, R65 (2005)

    CAS  ADS  Article  Google Scholar 

  14. 14

    Vinh, N. Q., Ha, N. N. & Gregorkiewicz, T. Photonic properties of Er-doped crystalline silicon. Proc. IEEE 97, 1269–1283 (2009)

    CAS  Article  Google Scholar 

  15. 15

    Bertaina, S. et al. Rare-earth solid-state qubits. Nature Nanotechnol. 2, 39–42 (2007)

    CAS  ADS  Article  Google Scholar 

  16. 16

    Baldit, E. et al. Identification of Λ-like systems in Er3+:Y2SiO5 and observation of electromagnetically induced transparency. Phys. Rev. B 81, 144303 (2010)

    ADS  Article  Google Scholar 

  17. 17

    Kolesov, R. et al. Optical detection of a single rare-earth ion in a crystal. Nature Commun. 3, 1029 (2012)

    CAS  ADS  Article  Google Scholar 

  18. 18

    Sun, Y., Thiel, C. W., Cone, R. L., Equall, R. W. & Hutcheson, R. L. Recent progress in developing new rare earth materials for hole burning and coherent transient applications. J. Lumin. 98, 281–287 (2002)

    CAS  Article  Google Scholar 

  19. 19

    Priolo, F., Franz, G., Coffa, S. & Carnera, A. Excitation and nonradiative deexcitation processes of Er3+ in crystalline Si. Phys. Rev. B 57, 4443 (1998)

    CAS  ADS  Article  Google Scholar 

  20. 20

    Pioda, A. et al. Single-shot detection of electrons generated by individual photons in a tunable lateral quantum dot. Phys. Rev. Lett. 106, 146804 (2011)

    CAS  ADS  Article  Google Scholar 

  21. 21

    Hanson, R., Petta, J. R., Tarucha, S. & Vandersypen, L. M. K. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007)

    CAS  ADS  Article  Google Scholar 

  22. 22

    Sellier, H. et al. Subthreshold channels at the edges of nanoscale triple-gate silicon transistors. Appl. Phys. Lett. 90, 073502 (2007)

    ADS  Article  Google Scholar 

  23. 23

    Tettamanzi, G. C. et al. Interface trap density metrology of state-of-the-art undoped Si n-FinFETs. IEEE Electron Device Lett. 32, 440–442 (2011)

    CAS  ADS  Article  Google Scholar 

  24. 24

    Guillot-Nol, O. et al. Hyperfine interaction of Er3+ ions in Y2SiO5: an electron paramagnetic resonance spectroscopy study. Phys. Rev. B 74, 214409 (2006)

    ADS  Article  Google Scholar 

  25. 25

    Hedges, M. P., Longdell, J. J., Li, Y. & Sellars, M. J. Efficient quantum memory for light. Nature 465, 1052–1056 (2010)

    CAS  ADS  Article  Google Scholar 

  26. 26

    Simmons, S. et al. Entanglement in a solid-state spin ensemble. Nature 470, 69–72 (2011)

    CAS  ADS  Article  Google Scholar 

  27. 27

    Smith, K. F. & Unsworth, P. J. The hyperfine structure of 167Er and magnetic moments of 143, 145Nd and 167Er by atomic beam triple magnetic resonance. Proc. Phys. Soc. 86, 1249 (1965)

    CAS  ADS  Article  Google Scholar 

  28. 28

    McAuslan, D. L., Bartholomew, J. G., Sellars, M. J. & Longdell, J. J. Reducing decoherence in optical and spin transitions in rare-earth-metal-ion–doped materials. Phys. Rev. A 85, 032339 (2012)

    ADS  Article  Google Scholar 

  29. 29

    Yang, S. et al. Electron paramagnetic resonance of Er3+ ions in aluminum nitride. J. Appl. Phys. 105, 023714 (2009)

    ADS  Article  Google Scholar 

  30. 30

    Lansbergen, G. P. et al. Gate-induced quantum-confinement transition of a single dopant atom in a silicon FinFET. Nature Phys. 4, 656–661 (2008)

    CAS  Article  Google Scholar 

  31. 31

    Sleiter, D. J. et al. Optical pumping of a single electron spin bound to a fluorine donor in a ZnSe nanostructure. Nano Lett. 13(1), 116–120 (2013)

    ADS  Article  Google Scholar 

  32. 32

    Michel, J. et al. Impurity enhancement of the 1.54 μm Er3+ luminescence in silicon. J. Appl. Phys. 70, 2672–2678 (1991)

    CAS  ADS  Article  Google Scholar 

  33. 33

    Ziegler, J. F., Ziegler, M. & Biersack, J. SRIM – The stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res. B 268, 1818–1823 (2010)

    CAS  ADS  Article  Google Scholar 

Download references


We thank R. Ahlefeldt, J. Bartholomew, R. Elliman, N. Manson and A. Morello for discussions. We also thank M. Hedges and T. Lucas for their help in the initial phase of the experiments. The devices were fabricated by N. Collaert and S. Biesemans. This work was financially supported by the ARC Centre of Excellence for Quantum Computation and Communication Technology (CE110001027) and the Future Fellowships (FT100100589 and FT110100919).

Author information




N.S. and J.C.M. designed and performed the implantation. C.Y., M.J.S. and S.R. designed and conducted the experiments. C.Y., M.R. and G.G.d.B. carried out the experiments. All the authors contributed to analysing the results and writing the paper.

Corresponding author

Correspondence to Sven Rogge.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yin, C., Rancic, M., de Boo, G. et al. Optical addressing of an individual erbium ion in silicon. Nature 497, 91–94 (2013).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing