Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The architecture of Tetrahymena telomerase holoenzyme

A Corrigendum to this article was published on 12 February 2014

This article has been updated

Abstract

Telomerase adds telomeric repeats to chromosome ends using an internal RNA template and a specialized telomerase reverse transcriptase (TERT), thereby maintaining genome integrity. Little is known about the physical relationships among protein and RNA subunits within a biologically functional holoenzyme. Here we describe the architecture of Tetrahymena thermophila telomerase holoenzyme determined by electron microscopy. Six of the seven proteins and the TERT-binding regions of telomerase RNA (TER) have been localized by affinity labelling. Fitting with high-resolution structures reveals the organization of TERT, TER and p65 in the ribonucleoprotein (RNP) catalytic core. p50 has an unanticipated role as a hub between the RNP catalytic core, p75–p19–p45 subcomplex, and the DNA-binding Teb1. A complete in vitro holoenzyme reconstitution assigns function to these interactions in processive telomeric repeat synthesis. These studies provide the first view of the extensive network of subunit associations necessary for telomerase holoenzyme assembly and physiological function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electron microscopy reconstruction of Tetrahymena telomerase holoenzyme and subunit localization.
Figure 2: Structure of the RNP catalytic core.
Figure 3: p50 anchors TERT, 7-1-4 and Teb1.
Figure 4: Contribution of Teb1 domains to holoenzyme structure and activity.
Figure 5: Positional dynamics of 7-1-4.

Similar content being viewed by others

Change history

References

  1. Artandi, S. E. & DePinho, R. A. Telomeres and telomerase in cancer. Carcinogenesis 31, 9–18 (2010)

    Article  CAS  Google Scholar 

  2. Armanios, M. & Blackburn, E. H. The telomere syndromes. Nature Rev. Genet. 13, 693–704 (2012)

    Article  CAS  Google Scholar 

  3. Blackburn, E. H., Greider, C. W. & Szostak, J. W. Telomeres and telomerase: The path from maize, Tetrahymena and yeast to human cancer and aging. Nature Med. 12, 1133–1138 (2006)

    Article  CAS  Google Scholar 

  4. Egan, E. D. & Collins, K. Biogenesis of telomerase ribonucleoproteins. RNA 18, 1747–1759 (2012)

    Article  CAS  Google Scholar 

  5. Podlevsky, J. D. & Chen, J. J. L. It all comes together at the ends: Telomerase structure, function, and biogenesis. Mutat. Res. 730, 3–11 (2012)

    Article  CAS  Google Scholar 

  6. Min, B. & Collins, K. An RPA-related sequence-specific DNA-binding subunit of telomerase holoenzyme is required for elongation processivity and telomere maintenance. Mol. Cell 36, 609–619 (2009)

    Article  CAS  Google Scholar 

  7. Witkin, K. L. & Collins, K. Holoenzyme proteins required for the physiological assembly and activity of telomerase. Genes Dev. 18, 1107–1118 (2004)

    Article  CAS  Google Scholar 

  8. Singh, M. et al. Structural basis for telomerase RNA recognition and RNP assembly by the holoenzyme La family protein p65. Mol. Cell 47, 16–26 (2012)

    Article  CAS  Google Scholar 

  9. O’Connor, C. M. & Collins, K. A novel RNA binding domain in Tetrahymena telomerase p65 initiates hierarchical assembly of telomerase holoenzyme. Mol. Cell. Biol. 26, 2029–2036 (2006)

    Article  Google Scholar 

  10. Stone, M. D. et al. Stepwise protein-mediated RNA folding directs assembly of telomerase ribonucleoprotein. Nature 446, 458–461 (2007)

    Article  ADS  CAS  Google Scholar 

  11. Akiyama, B. M., Loper, J., Najarro, K. & Stone, M. D. The C-terminal domain of Tetrahymena thermophila telomerase holoenzyme protein p65 induces multiple structural changes in telomerase RNA. RNA 18, 653–660 (2012)

    Article  CAS  Google Scholar 

  12. Bryan, T. M., Goodrich, K. J. & Cech, T. R. Telomerase RNA bound by protein motifs specific to telomerase reverse transcriptase. Mol. Cell 6, 493–499 (2000)

    Article  CAS  Google Scholar 

  13. Lai, C. K., Mitchell, J. R. & Collins, K. RNA binding domain of telomerase reverse transcriptase. Mol. Cell. Biol. 21, 990–1000 (2001)

    Article  CAS  Google Scholar 

  14. Lai, C. K., Miller, M. C. & Collins, K. Template boundary definition in Tetrahymena telomerase. Genes Dev. 16, 415–420 (2002)

    Article  CAS  Google Scholar 

  15. Rouda, S. & Skordalakes, E. Structure of the RNA-binding domain of telomerase: Implications for RNA recognition and binding. Structure 15, 1403–1412 (2007)

    Article  CAS  Google Scholar 

  16. Jacobs, S. A., Podell, E. R. & Cech, T. R. Crystal structure of the essential N-terminal domain of telomerase reverse transcriptase. Nature Struct. Mol. Biol. 13, 218–225 (2006)

    Article  CAS  Google Scholar 

  17. Gillis, A. J., Schuller, A. P. & Skordalakes, E. Structure of the Tribolium castaneum telomerase catalytic subunit TERT. Nature 455, 633–637 (2008)

    Article  ADS  CAS  Google Scholar 

  18. Mitchell, M., Gillis, A., Futahashi, M., Fujiwara, H. & Skordalakes, E. Structural basis for telomerase catalytic subunit TERT binding to RNA template and telomeric DNA. Nature Struct. Mol. Biol. 17, 513–518 (2010)

    Article  CAS  Google Scholar 

  19. Robart, A. R. & Collins, K. Human telomerase domain interactions capture DNA for TEN domain-dependent processive elongation. Mol. Cell 42, 308–318 (2011)

    Article  CAS  Google Scholar 

  20. Zeng, Z. et al. Structural basis for Tetrahymena telomerase processivity factor Teb1 binding to single-stranded telomeric-repeat DNA. Proc. Natl Acad. Sci. USA 108, 20357–20361 (2011)

    Article  ADS  CAS  Google Scholar 

  21. Min, B. & Collins, K. Multiple mechanisms for elongation processivity within the reconstituted Tetrahymena telomerase holoenzyme. J. Biol. Chem. 285, 16434–16443 (2010)

    Article  CAS  Google Scholar 

  22. Radermacher, M., Wagenknecht, T., Verschoor, A. & Frank, J. Three-dimensional reconstruction from a single-exposure, random conical tilt series applied to the 50S ribosomal subunit of Escherichia coli. J. Microsc. 146, 113–136 (1987)

    Article  CAS  Google Scholar 

  23. Cunningham, D. D. & Collins, K. Biological and biochemical functions of RNA in the Tetrahymena telomerase holoenzyme. Mol. Cell. Biol. 25, 4442–4454 (2005)

    Article  CAS  Google Scholar 

  24. Chen, Y. et al. Structure of stem-loop IV of Tetrahymena telomerase RNA. EMBO J. 25, 3156–3166 (2006)

    Article  CAS  Google Scholar 

  25. Richards, R. J., Theimer, C. A., Finger, L. D. & Feigon, J. Structure of the Tetrahymena thermophila telomerase RNA helix II template boundary element. Nucleic Acids Res. 34, 816–825 (2006)

    Article  CAS  Google Scholar 

  26. Richards, R. J. et al. Structural study of elements of Tetrahymena telomerase RNA stem-loop IV domain important for function. RNA 12, 1475–1485 (2006)

    Article  CAS  Google Scholar 

  27. Arnold, K., Bordoli, L., Kopp, J. & Schwede, T. The SWISS-MODEL workspace: A web-based environment for protein structure homology modelling. Bioinformatics 22, 195–201 (2006)

    Article  CAS  Google Scholar 

  28. Steczkiewicz, K. et al. Human telomerase model shows the role of the TEN domain in advancing the double helix for the next polymerization step. Proc. Natl Acad. Sci. USA 108, 9443–9448 (2011)

    Article  ADS  CAS  Google Scholar 

  29. Friedman, K. L. & Cech, T. R. Essential functions of amino-terminal domains in the yeast telomerase catalytic subunit revealed by selection for viable mutants. Genes Dev. 13, 2863–2874 (1999)

    Article  CAS  Google Scholar 

  30. Armbruster, B. N., Banik, S. S. R., Guo, C., Smith, A. C. & Counter, C. M. N-terminal domains of the human telomerase catalytic subunit required for enzyme activity in vivo. Mol. Cell. Biol. 21, 7775–7786 (2001)

    Article  CAS  Google Scholar 

  31. Romi, E. et al. High-resolution physical and functional mapping of the template adjacent DNA binding site in catalytically active telomerase. Proc. Natl Acad. Sci. USA 104, 8791–8796 (2007)

    Article  ADS  CAS  Google Scholar 

  32. O’Connor, C. M., Lai, C. K. & Collins, K. Two purified domains of telomerase reverse transcriptase reconstitute sequence-specific interactions with RNA. J. Biol. Chem. 280, 17533–17539 (2005)

    Article  Google Scholar 

  33. Theimer, C. A. & Feigon, J. Structure and function of telomerase RNA. Curr. Opin. Struct. Biol. 16, 307–318 (2006)

    Article  CAS  Google Scholar 

  34. Cole, D. I. et al. New models of Tetrahymena telomerase RNA from experimentally derived constraints and modeling. J. Am. Chem. Soc. 134, 20070–20080 (2012)

    Article  CAS  Google Scholar 

  35. Lai, C. K., Miller, M. C. & Collins, K. Roles for RNA in telomerase nucleotide and repeat addition processivity. Mol. Cell 11, 1673–1683 (2003)

    Article  CAS  Google Scholar 

  36. Mason, D. X., Goneska, E. & Greider, C. W. Stem-loop IV of Tetrahymena telomerase RNA stimulates processivity in trans. Mol. Cell. Biol. 23, 5606–5613 (2003)

    Article  CAS  Google Scholar 

  37. Wu, J. Y., Stone, M. D. & Zhuang, X. A single-molecule assay for telomerase structure-function analysis. Nucleic Acids Res. 38, e16 (2010)

    Article  Google Scholar 

  38. Eckert, B. & Collins, K. Roles of telomerase reverse transcriptase N-terminal domain in assembly and activity of Tetrahymena telomerase holoenzyme. J. Biol. Chem. 287, 12805–12814 (2012)

    Article  CAS  Google Scholar 

  39. Fan, J. & Pavletich, N. P. Structure and conformational change of a replication protein A heterotrimer bound to ssDNA. Genes Dev. 26, 2337–2347 (2012)

    Article  CAS  Google Scholar 

  40. Rosenfeld, K. K., Ziv, T., Goldin, S., Glaser, F. & Manor, H. Mapping of DNA binding sites in the Tetrahymena telomerase holoenzyme proteins by UV cross-linking and mass spectrometry. J. Mol. Biol. 410, 77–92 (2011)

    Article  CAS  Google Scholar 

  41. Collins, K. Single-stranded DNA repeat synthesis by telomerase. Curr. Opin. Chem. Biol. 15, 643–648 (2011)

    Article  CAS  Google Scholar 

  42. Blackburn, E. H. & Collins, K. Telomerase: An RNP enzyme synthesizes DNA. Cold Spring Harb. Perspect. Biol. 3, a003558 (2011)

    Article  Google Scholar 

  43. Bley, C. J. et al. RNA–protein binding interface in the telomerase ribonucleoprotein. Proc. Natl Acad. Sci. USA 108, 20333–20338 (2011)

    Article  ADS  CAS  Google Scholar 

  44. Lee, J., Mandell, E. K., Rao, T., Wuttke, D. S. & Lundblad, V. Investigating the role of the Est3 protein in yeast telomere replication. Nucleic Acids Res. 38, 2279–2290 (2010)

    Article  CAS  Google Scholar 

  45. Yen, W. F., Chico, L., Lei, M. & Lue, N. F. Telomerase regulatory subunit Est3 in two Candida species physically interacts with the TEN domain of TERT and telomeric DNA. Proc. Natl Acad. Sci. USA 108, 20370–20375 (2011)

    Article  ADS  CAS  Google Scholar 

  46. Talley, J. M., DeZwaan, D. C., Maness, L. D., Freeman, B. C. & Friedman, K. L. Stimulation of yeast telomerase activity by the ever shorter telomere 3 (Est3) subunit is dependent on direct interaction with the catalytic protein Est2. J. Biol. Chem. 286, 26431–26439 (2011)

    Article  CAS  Google Scholar 

  47. Zaug, A. J., Podell, E. R., Nandakumar, J. & Cech, T. R. Functional interaction between telomere protein TPP1 and telomerase. Genes Dev. 24, 613–622 (2010)

    Article  CAS  Google Scholar 

  48. Sexton, A. N., Youmans, D. T. & Collins, K. Specificity requirements for human telomere protein interaction with telomerase holoenzyme. J. Biol. Chem. 287, 34455–34464 (2012)

    Article  CAS  Google Scholar 

  49. Couvillion, M. T. & Collins, K. Biochemical approaches including the design and use of strains expressing epitope-tagged proteins. Methods Cell Biol. 109, 347–355 (2012)

    Article  Google Scholar 

  50. Suloway, C. et al. Automated molecular microscopy: The new Leginon system. J. Struct. Biol. 151, 41–60 (2005)

    Article  CAS  Google Scholar 

  51. Suloway, C. et al. Fully automated, sequential tilt-series acquisition with Leginon. J. Struct. Biol. 167, 11–18 (2009)

    Article  CAS  Google Scholar 

  52. Voss, N. R., Yoshioka, C. K., Radermacher, M., Potter, C. S. & Carragher, B. DoG Picker and TiltPicker: Software tools to facilitate particle selection in single particle electron microscopy. J. Struct. Biol. 166, 205–213 (2009)

    Article  CAS  Google Scholar 

  53. Ludtke, S. J., Baldwin, P. R. & Chiu, W. EMAN: Semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97 (1999)

    Article  CAS  Google Scholar 

  54. Mindell, J. A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003)

    Article  Google Scholar 

  55. Heymann, J. B. Bsoft: Image and molecular processing in electron microscopy. J. Struct. Biol. 133, 156–169 (2001)

    Article  CAS  Google Scholar 

  56. Frank, J. et al. SPIDER and WEB: Processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199 (1996)

    Article  CAS  Google Scholar 

  57. Grigorieff, N. FREALIGN: High-resolution refinement of single particle structures. J. Struct. Biol. 157, 117–125 (2007)

    Article  CAS  Google Scholar 

  58. Scheres, S. H. & Chen, S. Prevention of overfitting in cryo-EM structure determination. Nature Methods 9, 853–854 (2012)

    Article  CAS  Google Scholar 

  59. Pettersen, E. F. et al. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004)

    Article  CAS  Google Scholar 

  60. Chacón, P. & Wriggers, W. Multi-resolution contour-based fitting of macromolecular structures. J. Mol. Biol. 317, 375–384 (2002)

    Article  Google Scholar 

  61. Jacks, A. et al. Structure of the C-terminal domain of human La protein reveals a novel RNA recognition motif coupled to a helical nuclear retention element. Structure 11, 833–843 (2003)

    Article  CAS  Google Scholar 

  62. Schwieters, C. D., Kuszewski, J. J. & Marius Clore, G. Using Xplor–NIH for NMR molecular structure determination. Prog. Nucl. Magn. Reson. Spectrosc. 48, 47–62 (2006)

    Article  CAS  Google Scholar 

  63. Schwieters, C. D., Kuszewski, J. J., Tjandra, N. & Marius Clore, G. The Xplor–NIH NMR molecular structure determination package. J. Magn. Reson. 160, 65–73 (2003)

    Article  ADS  CAS  Google Scholar 

  64. Ulyanov, N. B., Shefer, K., James, T. L. & Tzfati, Y. Pseudoknot structures with conserved base triples in telomerase RNAs of ciliates. Nucleic Acids Res. 35, 6150–6160 (2007)

    Article  CAS  Google Scholar 

  65. Theimer, C. A., Blois, C. A. & Feigon, J. Structure of the human telomerase RNA pseudoknot reveals conserved tertiary interactions essential for function. Mol. Cell 17, 671–682 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from NSF MCB1022379 and NIH GM48123 to J.F., NIH GM54198 to K.C., GM071940 and AI069015 to Z.H.Z., Ruth L. Kirschstein NRSA postdoctoral fellowship GM101874 to E.J.M., and Ruth L. Kirschstein NRSA pre-doctoral training grant GM007185 fellowship for H.C. and D.D.C. We acknowledge the use of instruments at the Electron Imaging Center for NanoMachines supported by NIH (1S10RR23057 to ZHZ) and CNSI at UCLA.

Author information

Authors and Affiliations

Authors

Contributions

J.J. and E.J.M. purified and characterized electron microscopy samples, collected and analysed electron microscopy data, and wrote the paper; K.H., B.E. and B.M. designed and made strains, expression plasmids, initial purifications and reconstituted holoenzyme; H.C. purified telomerase; D.D.C. refined and modelled elements of TER; Z.H.Z., K.C. and J.F. supervised the research, analysed data and wrote the paper.

Corresponding authors

Correspondence to Z. Hong Zhou, Kathleen Collins or Juli Feigon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-8 and a Supplementary Table outlining the strains and number of EM micrographs used in the EM studies. (PDF 7313 kb)

3D reconstruction of Teb1-f telomerase holoenzyme with fitting of high-resolution structures.

Rotation of Teb1-f telomerase holoenzyme 3D reconstruction followed by zoom in of Tetrahymena homology modeled TERT with RT (purple), TER template (magenta), CTE (light blue), and TRBD (blue) fit into the EM density. Zoom out and slight rotation showing fit of TEN domain (cyan), and stem-loop 2 (magenta), then La, RRM1, and xRRM2 of p65 (green), followed by incorporation of remaining TER components (black) stem 1, pseudoknot, and ssRNA regions, and Teb1C (orange). A final 360° rotation showing all high-resolution structures fit in and the locations of p75, p19, p45, and p50. (MOV 32810 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, J., Miracco, E., Hong, K. et al. The architecture of Tetrahymena telomerase holoenzyme. Nature 496, 187–192 (2013). https://doi.org/10.1038/nature12062

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12062

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing