Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An electrically pumped polariton laser


Conventional semiconductor laser emission relies on stimulated emission of photons1,2, which sets stringent requirements on the minimum amount of energy necessary for its operation3,4. In comparison, exciton–polaritons in strongly coupled quantum well microcavities5 can undergo stimulated scattering that promises more energy-efficient generation of coherent light by ‘polariton lasers’3,6. Polariton laser operation has been demonstrated in optically pumped semiconductor microcavities at temperatures up to room temperature7,8,9,10,11,12, and such lasers can outperform their weak-coupling counterparts in that they have a lower threshold density12,13. Even though polariton diodes have been realized14,15,16, electrically pumped polariton laser operation, which is essential for practical applications, has not been achieved until now. Here we present an electrically pumped polariton laser based on a microcavity containing multiple quantum wells. To prove polariton laser emission unambiguously, we apply a magnetic field and probe the hybrid light–matter nature of the polaritons. Our results represent an important step towards the practical implementation of polaritonic light sources and electrically injected condensates, and can be extended to room-temperature operation using wide-bandgap materials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Quantum well microcavity polariton diode and characteristics.
Figure 2: Spectral emission features in various excitation regimes.
Figure 3: Current-density dependency of the polariton diode emission.
Figure 4: Magnetic-field-dependent circular polarization spectra.
Figure 5: Zeeman splitting of the polaritonic emission.


  1. 1

    Coldren, L. A. & Corzine, S. W. Diode Lasers and Photonic Integrated Circuits (Wiley, 1995)

    Google Scholar 

  2. 2

    Einstein, A. Strahlungs-emission und -absorption nach der Quantentheorie. Verh. Deutsch. Phys. Gesell. 18, 318–323 (1916)

    CAS  ADS  Google Scholar 

  3. 3

    Imamoğlu, A., Ram, R. J., Pau, S. & Yamamoto, Y. Nonequilibrium condensates and lasers without inversion: exciton-polariton lasers. Phys. Rev. A 53, 4250–4253 (1996)

    ADS  Article  Google Scholar 

  4. 4

    Bernard, M. G. A. & Duraffourg, G. Laser conditions in semiconductors. Phys. Status Solidi B 1, 699–703 (1961)

    CAS  ADS  Article  Google Scholar 

  5. 5

    Weisbuch, C., Nishioka, M., Ishikawa, A. & Arakawa, Y. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314–3317 (1992)

    CAS  ADS  Article  Google Scholar 

  6. 6

    Kavokin, A. & Malpuech, G. Cavity Polaritons (Elsevier, 2003)

    Google Scholar 

  7. 7

    Deng, H. et al. Condensation of semiconductor microcavity exciton polaritons. Science 298, 199–202 (2002)

    CAS  ADS  Article  Google Scholar 

  8. 8

    Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006)

    CAS  ADS  Article  Google Scholar 

  9. 9

    Balili, R. et al. Bose-Einstein condensation of microcavity polaritons in a trap. Science 316, 1007–1010 (2007)

    CAS  ADS  Article  Google Scholar 

  10. 10

    Christopoulos, S. et al. Room-temperature polariton lasing in semiconductor microcavities. Phys. Rev. Lett. 98, 126405 (2007)

    CAS  ADS  Article  Google Scholar 

  11. 11

    Sun, L. et al. Room temperature one-dimensional polariton condensate in a ZnO microwire. Preprint at (2010)

  12. 12

    Deng, H., Weihs, G., Snoke, D., Bloch, J. & Yamamoto, Y. Polariton lasing vs. photon lasing in a semiconductor microcavity. Proc. Natl Acad. Sci. USA 100, 15318–15323 (2003)

    CAS  ADS  Article  Google Scholar 

  13. 13

    Tsotsis, J. et al. Lasing threshold doubling at the crossover from strong to weak coupling regime in GaAs microcavity. N. J. Phys. 14, 023060 (2012)

    Article  Google Scholar 

  14. 14

    Tsintzos, S. I. et al. A GaAs polariton light-emitting diode operating near room temperature. Nature 453, 372–375 (2008)

    CAS  ADS  Article  Google Scholar 

  15. 15

    Bajoni, D. et al. Polariton light-emitting diode in a GaAs-based microcavity. Phys. Rev. B 77, 113303 (2008)

    ADS  Article  Google Scholar 

  16. 16

    Khalifa, A. A., Love, A. P. D., Krizhanovskii, D. N., Skolnick, M. S. & Roberts, J. S. Electroluminescence emission from polariton states in GaAs-based semiconductor microcavities. Appl. Phys. Lett. 92, 061107 (2008)

    ADS  Article  Google Scholar 

  17. 17

    Bajoni, D., Senellart, P., Lemaître, A. & Bloch, J. Photon lasing in GaAs microcavity: similarities with a polariton condensate. Phys. Rev. B 76, 201305 (2007)

    ADS  Article  Google Scholar 

  18. 18

    Ohadi, H. et al. Spontaneous symmetry breaking in a polariton and photon laser. Phys. Rev. Lett. 109, 016404 (2012)

    CAS  ADS  Article  Google Scholar 

  19. 19

    Kulakovskii, V. D. et al. Magnetic field control of polarized polariton condensates in rectangular microcavity pillars. Phys. Rev. B 85, 155322 (2012)

    ADS  Article  Google Scholar 

  20. 20

    Wertz, E. et al. Spontaneous formation of a polariton condensate in a planar GaAs microcavity. Appl. Phys. Lett. 95, 051108 (2009)

    ADS  Article  Google Scholar 

  21. 21

    Kulakovskii, V. D. et al. Bose-Einstein condensation of exciton polaritons in high-Q planar microcavities with GaAs quantum wells. JETP Lett. 92, 595–599 (2010)

    ADS  Article  Google Scholar 

  22. 22

    Nelsen, B., Balili, R., Snoke, D. W., Pfeiffer, L. & West, K. Lasing and polariton condensation: two distinct transitions in GaAs microcavities with stress traps. J. Appl. Phys. 105, 122414 (2009)

    ADS  Article  Google Scholar 

  23. 23

    Dang, L. S., Heger, D., Andre, R., Boeuf, F. & Romestain, R. Stimulated emission of polariton luminescence in semiconductor microcavity. Phys. Rev. Lett. 81, 3920–3923 (1998)

    CAS  ADS  Article  Google Scholar 

  24. 24

    Kammann, E., Ohadi, H., Maragkou, M., Kavokin, A. V. & Lagoudakis, P. G. Crossover from photon to exciton-polariton lasing. N. J. Phys. 14, 105003 (2012)

    Article  Google Scholar 

  25. 25

    Keeling, J., Eastham, P. R., Szymanska, M. H. & Littlewood, P. B. BCS-BEC crossover in a system of microcavity polaritons. Phys. Rev. B 72, 115320 (2005)

    ADS  Article  Google Scholar 

  26. 26

    Byrnes, T., Horikiri, T., Ishida, N. & Yamamoto, Y. BCS wavefunction approach to the BEC-BCS crossover of exciton-polariton condensates. Phys. Rev. Lett. 105, 186402 (2010)

    ADS  Article  Google Scholar 

  27. 27

    Kappei, L., Szczytko, J., Morier-Genoud, F. & Deveaud, B. Direct observation of the Mott transition in an optically excited semiconductor quantum well. Phys. Rev. Lett. 94, 147403 (2005)

    CAS  ADS  Article  Google Scholar 

  28. 28

    Rahimi-Iman, A. et al. Zeeman splitting and diamagnetic shift of spatially confined quantum-well exciton polaritons in an external magnetic field. Phys. Rev. B 84, 165325 (2011)

    ADS  Article  Google Scholar 

  29. 29

    Larionov, A. V. et al. Polarized nonequilibrium Bose-Einstein condensates of spinor exciton polaritons in a magnetic field. Phys. Rev. Lett. 105, 256401 (2010)

    CAS  ADS  Article  Google Scholar 

  30. 30

    Rubo, Y. G., Kavokin, A. V. & Shelykh, I. A. Suppression of superfluidity of exciton-polaritons by magnetic field. Phys. Lett. A 358, 227–230 (2006)

    CAS  ADS  Article  Google Scholar 

  31. 31

    Tassone, F. & Yamamoto, Y. Exciton-exciton scattering dynamics in a semiconductor microcavity and stimulated scattering into polaritons. Phys. Rev. B 59, 10830–10842 (1999)

    CAS  ADS  Article  Google Scholar 

  32. 32

    Kotlyar, R., Reinecke, T. L., Bayer, M. & Forchel, A. Zeeman spin splittings in semiconductor nanostructures. Phys. Rev. B 63, 085310 (2001)

    ADS  Article  Google Scholar 

Download references


This work was supported by the State of Bavaria, the National Science Foundation and by JSPS through its FIRST programme. I.G.S. acknowledges support from the Eimskip foundation. I.A.S. acknowledges support from the ‘Center of excellence in polaritonics’, IRSES SPINMET and POLAPHEN projects. A.R.-I. acknowledges a German National Academic Foundation fellowship. The authors thank T. Sünner, I. Lederer and A. Schade for experimental and technical support.

Author information




S.H. initiated the study and guided the work together with S.R., Y.Y. and A.F. C.S., M.L. and S.H. designed and grew the wafer and performed pre-characterization. A.W. and M.K. processed the devices. A.R.-I., J.F., N.Y.K., L.W. and S.R. established an electrical/optical Fourier-space spectroscopy setup. A.R.-I., J.F., M.A., C.S., S.H., N.Y.K. and S.R. performed experiments. A.R.-I., C.S. and M.A. analysed and interpreted the experimental data, supported by S.H., S.R., V.D.K., I.G.S. and I.A.S. C.S., A.R.-I. and S.H. wrote the manuscript, with input from all co-authors. C.S. and A.R.-I. contributed equally to the study.

Corresponding authors

Correspondence to Christian Schneider or Sven Höfling.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, Supplementary Figures 1-5 and Supplementary References. (PDF 560 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schneider, C., Rahimi-Iman, A., Kim, N. et al. An electrically pumped polariton laser. Nature 497, 348–352 (2013).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing