Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

M-CSF instructs myeloid lineage fate in single haematopoietic stem cells


Under stress conditions such as infection or inflammation the body rapidly needs to generate new blood cells that are adapted to the challenge. Haematopoietic cytokines are known to increase output of specific mature cells by affecting survival, expansion and differentiation of lineage-committed progenitors1,2, but it has been debated whether long-term haematopoietic stem cells (HSCs) are susceptible to direct lineage-specifying effects of cytokines. Although genetic changes in transcription factor balance can sensitize HSCs to cytokine instruction3, the initiation of HSC commitment is generally thought to be triggered by stochastic fluctuation in cell-intrinsic regulators such as lineage-specific transcription factors4,5,6,7, leaving cytokines to ensure survival and proliferation of the progeny cells8,9. Here we show that macrophage colony-stimulating factor (M-CSF, also called CSF1), a myeloid cytokine released during infection and inflammation, can directly induce the myeloid master regulator PU.1 and instruct myeloid cell-fate change in mouse HSCs, independently of selective survival or proliferation. Video imaging and single-cell gene expression analysis revealed that stimulation of highly purified HSCs with M-CSF in culture resulted in activation of the PU.1 promoter and an increased number of PU.1+ cells with myeloid gene signature and differentiation potential. In vivo, high systemic levels of M-CSF directly stimulated M-CSF-receptor-dependent activation of endogenous PU.1 protein in single HSCs and induced a PU.1-dependent myeloid differentiation preference. Our data demonstrate that lineage-specific cytokines can act directly on HSCs in vitro and in vivo to instruct a change of cell identity. This fundamentally changes the current view of how HSCs respond to environmental challenge and implicates stress-induced cytokines as direct instructors of HSC fate.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: M-CSF activates the myeloid master regulator PU.1 in HSCs.
Figure 2: Continuous video imaging of PU.1+ cell generation from individual PU.1 HSCs.
Figure 3: M-CSF activates PU.1 and instructs myeloid identity in single HSCs.
Figure 4: M-CSF directly induces endogenous PU.1 protein in single HSCs in vivo and stimulates a reversible, PU.1-dependent myeloid differentiation preference.


  1. Metcalf, D. Hematopoietic cytokines. Blood 111, 485–491 (2008)

    Article  CAS  Google Scholar 

  2. Rieger, M. A., Hoppe, P. S., Smejkal, B. M., Eitelhuber, A. C. & Schroeder, T. Hematopoietic cytokines can instruct lineage choice. Science 325, 217–218 (2009)

    Article  CAS  ADS  Google Scholar 

  3. Sarrazin, S. et al. MafB restricts M-CSF dependent myeloid commitment divisions of hematopoietic stem cells. Cell 138, 300–313 (2009)

    Article  CAS  Google Scholar 

  4. Orkin, S. H. Diversification of haematopoietic stem cells to specific lineages. Nature Rev. Genet. 1, 57–64 (2000)

    Article  CAS  Google Scholar 

  5. Cantor, A. B. & Orkin, S. H. Hematopoietic development: a balancing act. Curr. Opin. Genet. Dev. 11, 513–519 (2001)

    Article  CAS  Google Scholar 

  6. Enver, T., Pera, M., Peterson, C. & Andrews, P. W. Stem cell states, fates, and the rules of attraction. Cell Stem Cell 4, 387–397 (2009)

    Article  CAS  Google Scholar 

  7. Graf, T. & Enver, T. Forcing cells to change lineages. Nature 462, 587–594 (2009)

    Article  CAS  ADS  Google Scholar 

  8. Socolovsky, M., Lodish, H. F. & Daley, G. Q. Control of hematopoietic differentiation: lack of specificity in signaling by cytokine receptors. Proc. Natl Acad. Sci. USA 95, 6573–6575 (1998)

    Article  CAS  ADS  Google Scholar 

  9. Metcalf, D. On hematopoietic stem cell fate. Immunity 26, 669–673 (2007)

    Article  CAS  Google Scholar 

  10. Cheers, C. & Stanley, E. R. Macrophage production during murine listeriosis: colony-stimulating factor 1 (CSF-1) and CSF-1-binding cells in genetically resistant and susceptible mice. Infect. Immun. 56, 2972–2978 (1988)

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Roth, P., Bartocci, A. & Stanley, E. R. Lipopolysaccharide induces synthesis of mouse colony-stimulating factor-1 in vivo . J. Immunol. 158, 3874–3880 (1997)

    CAS  PubMed  Google Scholar 

  12. Cross, M. A. & Enver, T. The lineage commitment of haemopoietic progenitor cells. Curr. Opin. Genet. Dev. 7, 609–613 (1997)

    Article  CAS  Google Scholar 

  13. Enver, T., Heyworth, C. M. & Dexter, T. M. Do stem cells play dice? Blood 92, 348–351 (1998)

    CAS  PubMed  Google Scholar 

  14. Till, J. E., McCulloch, E. A. & Siminovitch, L. A stochastic model of stem cell proliferation, based on the growth of spleen colony-forming cells. Proc. Natl Acad. Sci. USA 51, 29–36 (1964)

    Article  CAS  ADS  Google Scholar 

  15. Chang, H. H., Hemberg, M., Barahona, M., Ingber, D. E. & Huang, S. Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature 453, 544–547 (2008)

    Article  CAS  ADS  Google Scholar 

  16. Laiosa, C. V., Stadtfeld, M. & Graf, T. Determinants of lymphoid-myeloid lineage diversification. Annu. Rev. Immunol. 24, 705–738 (2006)

    Article  CAS  Google Scholar 

  17. Orkin, S. H. & Zon, L. I. Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132, 631–644 (2008)

    Article  CAS  Google Scholar 

  18. Back, J., Allman, D., Chan, S. & Kastner, P. Visualizing PU.1 activity during hematopoiesis. Exp. Hematol. 33, 395–402 (2005)

    Article  CAS  Google Scholar 

  19. Miyamoto, T. et al. Myeloid or lymphoid promiscuity as a critical step in hematopoietic lineage commitment. Dev. Cell 3, 137–147 (2002)

    Article  CAS  Google Scholar 

  20. Morita, Y., Ema, H. & Nakauchi, H. Heterogeneity and hierarchy within the most primitive hematopoietic stem cell compartment. J. Exp. Med. 207, 1173–1182 (2010)

    Article  CAS  Google Scholar 

  21. Cheers, C. et al. Production of colony-stimulating factors (CSFs) during infection: separate determinations of macrophage-, granulocyte-, granulocyte-macrophage-, and multi-CSFs. Infect. Immun. 56, 247–251 (1988)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hoebe, R. A. et al. Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging. Nature Biotechnol. 25, 249–253 (2007)

    Article  CAS  Google Scholar 

  23. Schroeder, T. Long-term single-cell imaging of mammalian stem cells. Nature Methods 8, S30–S35 (2011)

    Article  CAS  Google Scholar 

  24. Kiel, M. J. & Morrison, S. J. Uncertainty in the niches that maintain haematopoietic stem cells. Nature Rev. Immunol. 8, 290–301 (2008)

    Article  CAS  Google Scholar 

  25. Sudo, T. et al. Functional hierarchy of c-kit and c-fms in intramarrow production of CFU-M. Oncogene 11, 2469–2476 (1995)

    CAS  PubMed  Google Scholar 

  26. Dai, X. M. et al. Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood 99, 111–120 (2002)

    Article  CAS  Google Scholar 

  27. Pixley, F. J. & Stanley, E. R. CSF-1 regulation of the wandering macrophage: complexity in action. Trends Cell Biol. 14, 628–638 (2004)

    Article  CAS  Google Scholar 

  28. Baldridge, M. T., King, K. Y., Boles, N. C., Weksberg, D. C. & Goodell, M. A. Quiescent haematopoietic stem cells are activated by IFN-γ in response to chronic infection. Nature 465, 793–797 (2010)

    Article  CAS  ADS  Google Scholar 

  29. Essers, M. A. et al. IFNα activates dormant haematopoietic stem cells in vivo . Nature 458, 904–908 (2009)

    Article  CAS  ADS  Google Scholar 

  30. King, K. Y. & Goodell, M. A. Inflammatory modulation of HSCs: viewing the HSC as a foundation for the immune response. Nature Rev. Immunol. 11, 685–692 (2011)

    Article  CAS  Google Scholar 

  31. Back, J., Dierich, A., Bronn, C., Kastner, P. & Chan, S. PU.1 determines the self-renewal capacity of erythroid progenitor cells. Blood 103, 3615–3623 (2004)

    Article  CAS  Google Scholar 

  32. Dakic, A. et al. PU.1 regulates the commitment of adult hematopoietic progenitors and restricts granulopoiesis. J. Exp. Med. 201, 1487–1502 (2005)

    Article  CAS  Google Scholar 

  33. Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T. & Nishimune, Y. ‘Green mice’ as a source of ubiquitous green cells. FEBS Lett. 407, 313–319 (1997)

    Article  CAS  Google Scholar 

  34. Bryder, D., Rossi, D. J. & Weissman, I. L. Hematopoietic stem cells: the paradigmatic tissue-specific stem cell. Am. J. Pathol. 169, 338–346 (2006)

    Article  CAS  Google Scholar 

  35. Niu, C. et al. c-Myc is a target of RNA-binding motif protein 15 in the regulation of adult hematopoietic stem cell and megakaryocyte development. Blood 114, 2087–2096 (2009)

    Article  CAS  Google Scholar 

  36. Meijering, E., Dzyubachyk, O. & Smal, I. Methods for cell and particle tracking. Methods Enzymol. 504, 183–200 (2012)

    Article  Google Scholar 

  37. R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2012)

Download references


We acknowledge grants from the ‘Association pour la recherche sur le Cancer’ (3422) and the ‘Agence nationale de la Recherche’ (BLAN07-1_205752). We thank P. Kastner and S. Chan for PU.1-GFP reporter mice; T. P. VuManh and J. Maurizio for bioinformatics; M. Barad, A. Zouine and M.-L. Thibult for flow cytometry support; L. Razafindramanana for animal handling; and J. Favret, P. Perrin and L. Chasson for tissue sectioning. E.R.S. is supported by NIH grant CA 32551. S.L.N. is an Australian Research Council Future Fellow and received Victorian State Government Operational and Australian Government NHMRC Independent Research Institute Infrastructure Support. M.H.S. is a ‘Fondation pour la Recherche Médicale’ (DEQ20071210559; DEQ20110421320) and INSERM-Helmholtz group leader.

Author information

Authors and Affiliations



M.H.S. conceived the study, analysed and interpreted data and wrote the paper; S.S. performed experiments, analysed and interpreted data and contributed to the preparation of the manuscript; N.M.-K. performed most experiments and analysed data; P.K.K. performed and analysed video microscopy and contributed to other experiments; L.E. analysed and interpreted video microscopy data; J.M. provided expertise and service on Fluidigm experiments; E.R.S. and S.L.N. provided essential M-CSFR and PU.1-deficient haematopoietic cells. N.M.-K. and S.S. contributed equally to the study. N.M.-K., S.S., P.K.K., L.E. and M.H.S. jointly designed experiments and S.S. and M.H.S. coordinated the project.

Corresponding authors

Correspondence to Sandrine Sarrazin or Michael H. Sieweke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-14, Supplementary Table 1, a Supplementary Discussion and Supplementary References. (PDF 748 kb)

GFP negative HSC

Time lapse microscopy recording bright field and GFP-fluorescence in 10 minute intervals of a representative GFP negative HSC sorted from PU.1-GFP reporter mice in M-CSF culture, showing no GFP activation. (AVI 259 kb)

GFP positive HSC 1

Time lapse microscopy recording bright field and GFP-fluorescence in 10 minute intervals of a representative GFP negative HSC sorted from PU.1-GFP reporter mice in M-CSF culture, showing GFP activation. (AVI 176 kb)

GFP positive HSC 2

Time lapse microscopy recording bright field and GFP-fluorescence in 10 minute intervals of a representative GFP negative HSC sorted from PU.1-GFP reporter mice in M-CSF culture, showing GFP activation. (AVI 252 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mossadegh-Keller, N., Sarrazin, S., Kandalla, P. et al. M-CSF instructs myeloid lineage fate in single haematopoietic stem cells. Nature 497, 239–243 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing