Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Long-term sedimentary recycling of rare sulphur isotope anomalies

Abstract

The accumulation of substantial quantities of O2 in the atmosphere has come to control the chemistry and ecological structure of Earth’s surface. Non-mass-dependent (NMD) sulphur isotope anomalies in the rock record1 are the central tool used to reconstruct the redox history of the early atmosphere. The generation and initial delivery of these anomalies to marine sediments requires low partial pressures of atmospheric O2 (; refs 2, 3), and the disappearance of NMD anomalies from the rock record 2.32 billion years ago1,4 is thought to have signalled a departure from persistently low atmospheric oxygen levels (less than about 10−5 times the present atmospheric level) during approximately the first two billion years of Earth’s history. Here we present a model study designed to describe the long-term surface recycling of crustal NMD anomalies, and show that the record of this geochemical signal is likely to display a ‘crustal memory effect’ following increases in atmospheric above this threshold. Once NMD anomalies have been buried in the upper crust they are extremely resistant to removal, and can be erased only through successive cycles of weathering, dilution and burial on an oxygenated Earth surface. This recycling results in the residual incorporation of NMD anomalies into the sedimentary record long after synchronous atmospheric generation of the isotopic signal has ceased, with dynamic and measurable signals probably surviving for as long as 10–100 million years subsequent to an increase in atmospheric to more than 10−5 times the present atmospheric level. Our results can reconcile geochemical evidence for oxygen production and transient accumulation with the maintenance of NMD anomalies on the early Earth5,6,7,8, and suggest that future work should investigate the notion that temporally continuous generation of new NMD sulphur isotope anomalies in the atmosphere was likely to have ceased long before their ultimate disappearance from the rock record.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The rare sulphur isotope record through time.
Figure 2: Schematic diagram of the sulphur isotope mass balance model.
Figure 3: Modelled changes to the Δ33S value of seawater sulphate after the onset of oxidative sulphur cycling.

References

  1. 1

    Farquhar, J., Bao, H. & Thiemens, M. Atmospheric influence of Earth’s earliest sulfur cycle. Science 289, 756–758 (2000)

    ADS  CAS  Article  PubMed  Google Scholar 

  2. 2

    Farquhar, J., Savarino, J., Airieau, S. & Thiemens, M. H. Observation of wavelength-sensitive mass-independent sulfur isotope effects during SO2 photolysis: implications for the early atmosphere. J. Geophys. Res. 106, 32829–32839 (2001)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Pavlov, A. A. & Kasting, J. F. Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. Astrobiology 2, 27–41 (2002)

    ADS  CAS  Article  PubMed  Google Scholar 

  4. 4

    Bekker, A. et al. Dating the rise of atmospheric oxygen. Nature 427, 117–120 (2004)

    ADS  CAS  Article  PubMed  Google Scholar 

  5. 5

    Anbar, A. D. et al. A whiff of oxygen before the Great Oxidation Event? Science 317, 1903–1906 (2007)

    ADS  CAS  Article  PubMed  Google Scholar 

  6. 6

    Frei, R., Gaucher, C., Poulton, S. W. & Canfield, D. E. Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. Nature 461, 250–253 (2009)

    ADS  CAS  Article  PubMed  Google Scholar 

  7. 7

    Reinhard, C. T., Raiswell, R., Scott, C., Anbar, A. D. & Lyons, T. W. A late Archean sulfidic sea stimulated by early oxidative weathering of the continents. Science 326, 713–716 (2009)

    ADS  CAS  Article  PubMed  Google Scholar 

  8. 8

    Konhauser, K. O. et al. Aerobic bacterial pyrite oxidation and acid rock drainage during the Great Oxidation Event. Nature 478, 369–373 (2011)

    ADS  CAS  Article  PubMed  Google Scholar 

  9. 9

    Ono, S. et al. New insights into Archean sulfur cycle from mass-independent sulfur isotope records from the Hamersley Basin, Australia. Earth Planet. Sci. Lett. 213, 15–30 (2003)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Halevy, I., Johnston, D. T. & Schrag, D. P. Explaining the structure of the Archean mass-independent sulfur isotope record. Science 329, 204–207 (2010)

    ADS  CAS  Article  PubMed  Google Scholar 

  11. 11

    Farquhar, J. et al. Inclusions in diamond and sulfur recycling on early Earth. Science 298, 2369–2372 (2002)

    ADS  CAS  Article  PubMed  Google Scholar 

  12. 12

    Farquhar, J. & Wing, B. A. Multiple sulfur isotopes and the evolution of the atmosphere. Earth Planet. Sci. Lett. 213, 1–13 (2003)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Bekker, A. et al. Atmospheric sulfur in Archean komatiite-hosted nickel deposits. Science 326, 1086–1089 (2009)

    ADS  CAS  Article  PubMed  Google Scholar 

  14. 14

    Canfield, D. E. & Farquhar, J. Animal evolution, bioturbation, and the sulfate concentration of the oceans. Proc. Natl Acad. Sci. USA 106, 8123–8127 (2009)

    ADS  CAS  Article  PubMed  Google Scholar 

  15. 15

    Habicht, K. S., Gade, M., Thamdrup, B., Berg, P. & Canfield, D. E. Calibration of sulfate levels in the Archean ocean. Science 298, 2372–2374 (2002)

    ADS  CAS  Article  PubMed  Google Scholar 

  16. 16

    Berner, R. A. Models for carbon and sulfur cycles and atmospheric oxygen: application to Paleozoic geologic history. Am. J. Sci. 287, 177–196 (1987)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Berner, R. A. & Canfield, D. E. A new model for atmospheric oxygen over Phanerozoic time. Am. J. Sci. 289, 333–361 (1989)

    ADS  CAS  Article  PubMed  Google Scholar 

  18. 18

    Berner, R. A. Modeling atmospheric O2 over Phanerozoic time. Geochim. Cosmochim. Acta 65, 685–694 (2001)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Garrels, R. M. & Lerman, A. Coupling of the sedimentary sulfur and carbon cycles – an improved model. Am. J. Sci. 284, 989–1007 (1984)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Kump, L. R. & Garrels, R. M. Modeling atmospheric O2 in the global sedimentary redox cycle. Am. J. Sci. 286, 337–360 (1986)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Royer, D. L., Berner, R. A. & Beerling, D. J. Phanerozoic atmospheric CO2 change: evaluating geochemical and paleobiological approaches. Earth Sci. Rev. 54, 349–392 (2001)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Scott, A. C. & Glasspool, I. J. The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. Proc. Natl Acad. Sci. USA 103, 10861–10865 (2006)

    ADS  CAS  Article  PubMed  Google Scholar 

  23. 23

    Farquhar, J. & Wing, B. A. The terrestrial record of stable sulphur isotopes: a review of the implications for evolution of Earth’s sulphur cycle. Spec. Publ. Geol. Soc. (Lond.) 248, 167–177 (2005)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Ueno, Y., Ono, S., Rumble, D. & Maruyama, S. Quadruple sulfur isotope analysis of ca. 3.5 Ga Dresser Formation: new evidence for microbial sulfate reduction in the early Archean. Geochim. Cosmochim. Acta 72, 5675–5691 (2008)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Bluth, G. J. S. & Kump, L. R. Phanerozoic paleogeology. Am. J. Sci. 291, 284–308 (1991)

    ADS  Article  Google Scholar 

  26. 26

    Gregor, C. B. The mass-age distribution of Phanerozoic sediments. Geol. Soc. Lond. Mem. 10, 284–289 (1985)

    Article  Google Scholar 

  27. 27

    Garrels, R. M. & Mackenzie, F. T. A quantitative model for the sedimentary rock cycle. Mar. Chem. 1, 27–41 (1972)

    Article  Google Scholar 

  28. 28

    Kaufman, A. J. et al. Late Archean biospheric oxygenation and atmospheric evolution. Science 317, 1900–1903 (2007)

    ADS  CAS  Article  PubMed  Google Scholar 

  29. 29

    Garvin, J., Buick, R., Anbar, A. D., Arnold, G. L. & Kaufman, A. J. Isotopic evidence for an aerobic nitrogen cycling in the latest Archean. Science 323, 1045–1048 (2009)

    ADS  CAS  Article  PubMed  Google Scholar 

  30. 30

    Goldblatt, C., Lenton, T. M. & Watson, A. J. Bistability of atmospheric oxygen and the Great Oxidation. Nature 443, 683–686 (2006)

    ADS  CAS  Article  PubMed  Google Scholar 

  31. 31

    Evans, D. A., Beukes, N. J. & Kirschvink, J. L. Low-latitude glaciation in the Palaeoproterozoic era. Nature 386, 262–266 (1997)

    ADS  CAS  Article  Google Scholar 

  32. 32

    Maynard, J. B. The chemistry of manganese ores through time: a signal of increasing diversity of Earth-surface environments. Econ. Geol. 105, 535–552 (2010)

    CAS  Article  Google Scholar 

  33. 33

    Berner, R. A. Biogeochemical cycles of carbon and sulfur and their effect on atmospheric oxygen over Phanerozoic time. Palaeogeogr. Palaeoclimatol. Palaeoecol. 75, 97–122 (1989)

    Article  Google Scholar 

  34. 34

    Berner, R. A. GEOCARBSULF: a combined model for Phanerozoic atmospheric O2 and CO2 . Geochim. Cosmochim. Acta 70, 5653–5664 (2006)

    ADS  CAS  Article  Google Scholar 

  35. 35

    Garrels, R. M. & Mackenzie, F. T. Sedimentary rock types: relative proportions as a function of geological time. Science 163, 570–571 (1969)

    ADS  CAS  Article  PubMed  Google Scholar 

  36. 36

    Royer, D. L. & Berner, R. A. &. Park, J. Climate sensitivity constrained by CO2 concentrations over the past 420 million years. Nature 446, 530–532 (2007)

    ADS  CAS  Article  PubMed  Google Scholar 

  37. 37

    Berner, R. A. & Kothavala, Z. GEOCARB III: a revised model of atmospheric CO2 over Phanerozoic time. Am. J. Sci. 301, 182–204 (2001)

    ADS  CAS  Article  Google Scholar 

  38. 38

    Li, Y.-H. Geochemical mass balance among lithosophere, hydrosphere, and atmosphere. Am. J. Sci. 272, 119–137 (1972)

    ADS  CAS  Article  Google Scholar 

  39. 39

    Canfield, D. E. The evolution of the Earth surface sulfur reservoir. Am. J. Sci. 304, 839–861 (2004)

    ADS  CAS  Article  Google Scholar 

  40. 40

    Garrels, R. M., Lerman, A. & Mackenzie, F. T. Controls of atmospheric O2 and CO2: past, present, and future. Am. Sci. 64, 306–315 (1976)

    ADS  Google Scholar 

  41. 41

    Blatt, H. & Jones, R. L. Proportions of exposed igneous, metamorphic, and sedimentary rocks. Geol. Soc. Am. Bull. 86, 1085–1088 (1975)

    ADS  Article  Google Scholar 

  42. 42

    Berner, R. A. A model for atmospheric CO2 over Phanerozoic time. Am. J. Sci. 291, 339–376 (1991)

    ADS  CAS  Article  Google Scholar 

  43. 43

    Berresheim, H. & Jaeschke, W. The contribution of volcanoes to the global atmospheric sulfur budget. J. Geophys. Res. 88, 3732–3740 (1983)

    ADS  CAS  Article  Google Scholar 

  44. 44

    Walker, J. C. G. & Brimblecombe, P. Iron and sulfur in the pre-biologic ocean. Precambr. Res. 28, 205–222 (1985)

    ADS  CAS  Article  Google Scholar 

  45. 45

    Andres, R. J. & Kasgnoc, A. D. A time-averaged inventory of subaerial volcanic sulfur emissions. J. Geophys. Res. 103, 25251–25261 (1998)

    ADS  CAS  Article  Google Scholar 

  46. 46

    Halmer, M. M., Schmincke, H.-U. & Graf, H.-F. The annual volcanic gas input into the atmosphere, in particular to the stratosphere: a global data set for the past 100 years. J. Volcanol. Geotherm. Res. 115, 511–528 (2002)

    ADS  CAS  Article  Google Scholar 

  47. 47

    Canfield, D. E., Rosing, M. T. & Bjerrum, C. Early anaerobic metabolisms. Phil. Trans. R. Soc. B 361, 1819–1836 (2006)

    CAS  Article  PubMed  Google Scholar 

  48. 48

    Schubert, G., Stevenson, D. & Cassen, P. Whole planet cooling and the radiogenic heat source contents of the Earth and Moon. J. Geophys. Res. 85, 2531–2538 (1980)

    ADS  Article  Google Scholar 

  49. 49

    Christensen, U. R. Thermal evolution models for the Earth. J. Geophys. Res. 90, 2995–3007 (1985)

    ADS  CAS  Article  Google Scholar 

  50. 50

    Lenardic, A. Continental growth and the Archean paradox. Geophys. Monogr. Ser. 164, 33–45 (2006)

    Google Scholar 

  51. 51

    Padhi, C. M., Korenaga, J. & Ozima, M. Thermal evolution of Earth with xenon degassing: a self-consistent approach. Earth Planet. Sci. Lett. 341–344, 1–9 (2012)

    ADS  Article  Google Scholar 

  52. 52

    Kump, L. R. & Barley, M. E. Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago. Nature 448, 1033–1036 (2007)

    ADS  CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

Funding from NSF-EAR and the NASA Exobiology Program supported this research. C.T.R. acknowledges support from an O. K. Earl Postdoctoral Fellowship in Geological and Planetary Sciences at the California Institute of Technology. N.J.P. acknowledges support from NSF-EAR-PDF. Comments and criticism from L. Kump, B. Wing, A. Bekker and K. Konhauser greatly improved the manuscript.

Author information

Affiliations

Authors

Contributions

C.T.R. and N.J.P. designed the model. C.T.R. compiled the sulphur isotope database and performed the modelling and statistical analyses. C.T.R. and N.J.P. wrote the manuscript, with contributions from T.W.L.

Corresponding author

Correspondence to Christopher T. Reinhard.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, Supplementary Table 1, Supplementary Figures 1-4 and additional References. (PDF 809 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Reinhard, C., Planavsky, N. & Lyons, T. Long-term sedimentary recycling of rare sulphur isotope anomalies. Nature 497, 100–103 (2013). https://doi.org/10.1038/nature12021

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing