Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Intra-oceanic subduction shaped the assembly of Cordilleran North America

Abstract

The western quarter of North America consists of accreted terranes—crustal blocks added over the past 200 million years—but the reason for this is unclear. The widely accepted explanation posits that the oceanic Farallon plate acted as a conveyor belt, sweeping terranes into the continental margin while subducting under it. Here we show that this hypothesis, which fails to explain many terrane complexities, is also inconsistent with new tomographic images of lower-mantle slabs, and with their locations relative to plate reconstructions. We offer a reinterpretation of North American palaeogeography and test it quantitatively: collision events are clearly recorded by slab geometry, and can be time calibrated and reconciled with plate reconstructions and surface geology. The seas west of Cretaceous North America must have resembled today’s western Pacific, strung with island arcs. All proto-Pacific plates initially subducted into almost stationary, intra-oceanic trenches, and accumulated below as massive vertical slab walls. Above the slabs, long-lived volcanic archipelagos and subduction complexes grew. Crustal accretion occurred when North America overrode the archipelagos, causing major episodes of Cordilleran mountain building.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Slabs under North America and continental motion over time.
Figure 2: Schematic cross-section and evolution of a terrane station.
Figure 3: Sequence of trench overrides and terrane accretions.

References

  1. Coney, P. J., Jones, D. L. & Monger, J. W. H. Cordilleran suspect terranes. Nature 288, 329–333 (1980)

    Article  ADS  Google Scholar 

  2. Engebretson, D. C., Cox, A. & Gordon, R. Relative motions between oceanic and continental plates in the Pacific Basin. Geol. Soc. Am. Spec. Pap. 206, 1–59 (1985)

    Google Scholar 

  3. Atwater, T. Plate Tectonic History of the Northeast Pacific and Western North America. In The Eastern Pacific Ocean and Hawaii (eds Winterer, E. L., Hussong, D. M. & Decker, R. W. ) N 21–71 (Geological Society of America, 1989)

    Google Scholar 

  4. Monger, J. W. H., Price, R. A. & Tempelman-Kluit, D. J. Tectonic accretion and the origin of the two major metamorphic and plutonic welts in the Canadian Cordillera. Geology 10, 70–75 (1982)

    Article  ADS  Google Scholar 

  5. Mihalynuk, M. G., Nelson, J. & Diakow, L. J. Cache Creek Terrane entrapment: oroclinal paradox within the Canadian Cordillera. Tectonics 13, 575–595 (1994)

    Article  ADS  Google Scholar 

  6. Dickinson, W. R. & Lawton, T. F. Carboniferous to Cretaceous assembly and fragmentation of Mexico. Geol. Soc. Am. Bull. 113, 1142–1160 (2001)

    Article  ADS  CAS  Google Scholar 

  7. Moores, E. M. Ophiolites, the Sierra Nevada, ‘Cordilleria,’ and orogeny along the Pacific and Caribbean margins of North and South America. Int. Geol. Rev. 40, 40–54 (1998)

    Article  Google Scholar 

  8. Johnston, S. T. The great Alaskan terrane wreck; reconciliation of paleomagnetic and geological data in the northern Cordillera. Earth Planet. Sci. Lett. 193, 259–272 (2001)

    Article  ADS  CAS  Google Scholar 

  9. Grand, S. P., Van der Hilst, R. D. & Widiyantoro, S. Global seismic tomography; a snapshot of convection in the Earth. GSA Today 7, 1–7 (1997)

    Google Scholar 

  10. Montelli, R., Nolet, G., Masters, G., Dahlen, F. A. & Hung, S.-H. Global P and PP traveltime tomography: rays versus waves. Geophys. J. Int. 158, 637–654 (2004)

    Article  ADS  Google Scholar 

  11. Li, C., Van der Hilst, R. D., Engdahl, E. R. & Burdick, S. A new global model for P wave speed variations in Earth’s mantle. Geochem. Geophys. Geosyst. 9 Q05018, http://dx.doi.org/10.1029/2007GC001806 (2008)

  12. van der Meer, D. G., Spakman, W., Van Hinsbergen, D. J. J., Amaru, M. L. & Torsvik, T. H. Towards absolute plate motions constrained by lower-mantle slab remnants. Nature Geosci. 3, 36–40 (2010)

    Article  ADS  CAS  Google Scholar 

  13. Sigloch, K. Mantle provinces under North America from multifrequency P wave tomography. Geochem. Geophys. Geosyst.. 12, Q02W08, http://dx.doi.org/10.1029/2010GC003421 (2011)

    Article  Google Scholar 

  14. Pavlis, G. L., Sigloch, K., Burdick, S., Fouch, M. J. & Vernon, F. L. Unraveling the geometry of the Farallon plate: synthesis of three-dimensional imaging results from USArray. Tectonophysics 532–535, 82–102 (2012)

    Article  ADS  Google Scholar 

  15. Sigloch, K., McQuarrie, N. & Nolet, G. Two-stage subduction history under North America inferred from multiple-frequency tomography. Nature Geosci. 1, 458–462 (2008)

    Article  ADS  CAS  Google Scholar 

  16. Sdrolias, M. & Müller, R. D. Controls on back-arc basin formation. Geochem. Geophys. Geosyst.. 7, Q04016, http://dx.doi.org/10.1029/2005GC001090 (2006)

    Article  ADS  Google Scholar 

  17. Goes, S., Capitanio, F. A., Morra, G., Seton, M. & Giardini, D. Signatures of downgoing plate-buoyancy driven subduction in Cenozoic plate motions. Phys. Earth Planet. Inter. 184, 1–13 (2011)

    Article  ADS  Google Scholar 

  18. Ribe, N. M., Stutzmann, E., Ren, Y. & Van der Hilst, R. Buckling instabilities of subducted lithosphere beneath the transition zone. Earth Planet. Sci. Lett. 254, 173–179 (2007)

    Article  ADS  CAS  Google Scholar 

  19. Gibert, G., Gerbault, M., Hassani, R. & Tric, E. Dependency of slab geometry on absolute velocities and conditions for cyclicity: insights from numerical modelling. Geophys. J. Int. 189, 747–760 (2012)

    Article  ADS  Google Scholar 

  20. Goes, S., Capitanio, F. A. & Morra, G. Evidence of lower-mantle slab penetration phases in plate motions. Nature 451, 981–984 (2008)

    Article  ADS  CAS  Google Scholar 

  21. O’Neill, C., Müller, D. & Steinberger, B. On the uncertainties in hot spot reconstructions and the significance of moving hot spot reference frames. Geochem. Geophys. Geosyst.. 6, Q04003, http://dx.doi.org/10.1029/2004GC000784 (2005)

    ADS  Google Scholar 

  22. Seton, M. et al. Global continental and ocean basin reconstructions since 200 Ma. Earth Sci. Rev. 113, 212–270 (2012)

    Article  ADS  Google Scholar 

  23. Boyden, J. A. et al. in Geoinformatics: Cyberinfrastructure for the Solid Earth Sciences (eds Keller, G. R. & Baru, C. ) Ch. 7 95–114 (Cambridge Univ. Press, 2011)

  24. Gurnis, M. et al. Plate tectonic reconstructions with continuously closing plates. Comput. Geosci. 38, 35–42 (2012)

    Article  ADS  Google Scholar 

  25. Morgan, W. J. Convection plumes in the lower mantle. Nature 230, 42–43 (1971)

    Article  ADS  Google Scholar 

  26. Sager, W. W., Handschumacher, D. W., Hilde, T. W. C. & Bracey, D. R. Tectonic evolution of the northern Pacific plate and Pacific-Farallon Izanagi triple junction in the Late Jurassic and Early Cretaceous (M21–M10). Tectonophysics 155, 345–364 (1988)

    Article  ADS  Google Scholar 

  27. Bunge, H.-P. & Grand, S. P. Mesozoic plate-motion history below the northeast Pacific Ocean from seismic images of the subducted Farallon slab. Nature 405, 337–340 (2000)

    Article  ADS  CAS  Google Scholar 

  28. Ren, Y., Stutzmann, E., van der Hilst, R. D. & Besse, J. Understanding seismic heterogeneities in the lower mantle beneath the Americas from seismic tomography and plate tectonic history. J. Geophys. Res. 112 B01302, http://dx.doi.org/10.1029/2005JB004154 (2007)

  29. Decker, J. et al. Geology of Southwestern Alaska (eds Plafker, G. & Berg, H. C. ) Vol. G-1 285–310 (Geological Society of America, 1994)

  30. Poulton, T. P. et al. in The Geological Atlas of the Western Canada Sedimentary Basin Ch. 18 (2013); at http://www.ags.gov.ab.ca/publications/abstracts/DIG_2008_0252.html.

  31. Saha, A., Basu, A. R., Wakabayashi, J. & Wortman, G. L. Geochemical evidence for a subducted infant arc in Franciscan high-grade-metamorphic tectonic blocks. Geol. Soc. Am. Bull. 117, 1318–1335 (2005)

    Article  ADS  CAS  Google Scholar 

  32. Dickinson, W. R. Accretionary Mesozoic-Cenozoic expansion of the Cordilleran continental margin in California and adjacent Oregon. Geosphere 4, 329–353 (2008)

    Article  ADS  Google Scholar 

  33. Ernst, W. G. Accretion of the Franciscan Complex attending Jurassic-Cretaceous geotectonic development of northern and central California. Bull. Geol. Soc. Am. 123, 1667–1678 (2011)

    Article  Google Scholar 

  34. Leier, A. L. & Gehrels, G. E. Continental-scale detrital zircon provenance signatures in Lower Cretaceous strata, western North America. Geology 39, 399–402 (2011)

    Article  ADS  CAS  Google Scholar 

  35. Johnston, S. T. et al. Yellowstone in Yukon: the Late Cretaceous Carmacks Group. Geology 24, 997–1000 (1996)

    Article  ADS  CAS  Google Scholar 

  36. van de Zedde, D. M. A. & Wortel, M. J. R. Shallow slab detachment as a transient source of heat at midlithospheric depths. Tectonics 20, 868–882 (2001)

    Article  ADS  Google Scholar 

  37. McDowell, F. W., Roldan-Quintana, J. & Connelly, J. N. Duration of Late Cretaceous-early Tertiary magmatism in east-central Sonora, Mexico. Geol. Soc. Am. Bull. 113, 521–531 (2001)

    Article  ADS  CAS  Google Scholar 

  38. González-León, C. M. et al. Stratigraphy, geochronology, and geochemistry of the Laramide magmatic arc in north-central Sonora, Mexico. Geosphere 7, 1392–1418 (2011)

    Article  Google Scholar 

  39. Liu, L. et al. The role of oceanic plateau subduction in the Laramide orogeny. Nature Geosci. 3, 353–357 (2010)

    Article  ADS  CAS  Google Scholar 

  40. Livaccari, R. F., Burke, K. & Sengor, A. M. C. Was the Laramide Orogeny related to subduction of an oceanic plateau? Nature 289, 276–278 (1981)

    Article  ADS  Google Scholar 

  41. Enkin, R. J., Mahoney, J. B., Baker, J., Riesterer, J. & Haskin, M. L. Deciphering shallow paleomagnetic inclinations: 2. Implications from Late Cretaceous strata overlapping the Insular/Intermontane Superterrane boundary in the southern Canadian Cordillera. J. Geophys. Res.. B 108, 2186, http://dx.doi.org/10.1029/2002JB001983 (2003)

    Article  ADS  Google Scholar 

  42. Massey, N. Metchosin Igneous Complex, Southern Vancouver Island—ophiolite stratigraphy developed in an emergent island setting. Geology 14, 602–605 (1986)

    Article  ADS  Google Scholar 

  43. Wells, R. E. Reconsidering the origin and emplacement of Siletzia. Geol. Soc. Am. Abstr. Prog. 39 (4). 19 (2007)

    Google Scholar 

  44. Schmandt, B. & Humphreys, E. Seismically imaged relict slab from the 55 Ma Siletzia accretion to the northwest United States. Geology 39, 175–178 (2011)

    Article  ADS  Google Scholar 

  45. Shephard, G. E. et al. Testing absolute plate reference frames and the implications for the generation of geodynamic mantle heterogeneity structure. Earth Planet. Sci. Lett. 317–318, 204–217 (2012)

    Article  ADS  Google Scholar 

  46. Liu, L., Spasojević, S. & Gurnis, M. Reconstructing Farallon plate subduction beneath North America back to the Late Cretaceous. Science 322, 934–938 (2008)

    Article  ADS  CAS  Google Scholar 

  47. Steinberger, B., Torsvik, T. H. & Becker, T. W. Subduction to the lower mantle—a comparison between geodynamic and tomographic models. Solid Earth 3, 415–432 (2012)

    Article  ADS  Google Scholar 

  48. Zhong, S. & Gurnis, M. Mantle convection with plates and mobile, faulted plate margins. Science 267, 838–843 (1995)

    Article  ADS  CAS  Google Scholar 

  49. van der Meer, D. G., Torsvik, T. H., Spakman, W., van Hinsbergen, D. J. J. & Amaru, M. L. Intra-Panthalassa Ocean subduction zones revealed by fossil arcs and mantle structure. Nature Geosci. 5, 215–219 (2012)

    Article  ADS  CAS  Google Scholar 

  50. Torsvik, T. H., Müller, R. D., Van der Voo, R., Steinberger, B. & Gaina, C. Global plate motion frames: toward a unified model. Rev. Geophys.. 46, RG3004, http://dx.doi.org/10.1029/2007RG000227 (2008)

    Article  ADS  Google Scholar 

  51. Müller, R. D., Royer, J.-Y. & Lawver, L. A. Revised plate motions relative to the hotspots from combined Atlantic and Indian Ocean hotspot tracks. Geology 21, 275–278 (1993)

    Article  ADS  Google Scholar 

  52. Steinberger, B. & Torsvik, T. H. Absolute plate motions and true polar wander in the absence of hotspot tracks. Nature 452, 620–623 (2008)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Müller for making available the plate reconstructions of ref. 22 before publication (for Fig. 1), as well as the Shatsky plateau reconstructions of ref. 39 for Fig. 3. We thank G. W. Ernst for a constructive review. The P-wave tomography model used here is available in ASCII format as part of the Auxiliary Materials for ref. 13 at http://onlinelibrary.wiley.com/doi/10.1029/2010GC003421/suppinfo or may be obtained from K.S. This is British Columbia Geological Survey contribution #2012-2.

Author information

Authors and Affiliations

Authors

Contributions

K.S. generated the tomographic model, and integrated it with quantitative plate tectonic reconstructions in GPlates. M.G.M. provided the geological background and made the terrane maps of Fig. 3. Both authors contributed equally to developing the tectonic arguments and to the writing.

Corresponding authors

Correspondence to Karin Sigloch or Mitchell G. Mihalynuk.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-3, Supplementary Tables 1-2, Supplementary Discussion of data uncertainties and error propagation and Supplementary References. (PDF 5404 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sigloch, K., Mihalynuk, M. Intra-oceanic subduction shaped the assembly of Cordilleran North America. Nature 496, 50–56 (2013). https://doi.org/10.1038/nature12019

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12019

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing