Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The emergence of functional microcircuits in visual cortex

Abstract

Sensory processing occurs in neocortical microcircuits in which synaptic connectivity is highly structured1,2,3,4 and excitatory neurons form subnetworks that process related sensory information5,6. However, the developmental mechanisms underlying the formation of functionally organized connectivity in cortical microcircuits remain unknown. Here we directly relate patterns of excitatory synaptic connectivity to visual response properties of neighbouring layer 2/3 pyramidal neurons in mouse visual cortex at different postnatal ages, using two-photon calcium imaging in vivo and multiple whole-cell recordings in vitro. Although neural responses were already highly selective for visual stimuli at eye opening, neurons responding to similar visual features were not yet preferentially connected, indicating that the emergence of feature selectivity does not depend on the precise arrangement of local synaptic connections. After eye opening, local connectivity reorganized extensively: more connections formed selectively between neurons with similar visual responses and connections were eliminated between visually unresponsive neurons, but the overall connectivity rate did not change. We propose a sequential model of cortical microcircuit development based on activity-dependent mechanisms of plasticity whereby neurons first acquire feature preference by selecting feedforward inputs before the onset of sensory experience—a process that may be facilitated by early electrical coupling between neuronal subsets7,8,9—and then patterned input drives the formation of functional subnetworks through a redistribution of recurrent synaptic connections.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Responses of L2/3 pyramidal cells in mouse visual cortex are highly feature selective at eye opening.
Figure 2: Functionally specific connectivity between L2/3 pyramidal cells is not apparent at eye opening.
Figure 3: Developmental elimination of recurrent connections between non-responsive neurons.
Figure 4: Feedforward input structure determines the functional organization of recurrent connectivity.

Similar content being viewed by others

References

  1. Binzegger, T., Douglas, R. J. & Martin, K. A. C. A quantitative map of the circuit of cat primary visual cortex. J. Neurosci. 24, 8441–8453 (2004)

    Article  CAS  Google Scholar 

  2. Song, S., Sjöström, P. J., Reigl, M., Nelson, S. & Chklovskii, D. B. Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol. 3, e68 (2005)

    Article  Google Scholar 

  3. Brown, S. P. & Hestrin, S. Intracortical circuits of pyramidal neurons reflect their long-range axonal targets. Nature 457, 1133–1136 (2009)

    Article  ADS  CAS  Google Scholar 

  4. Perin, R., Berger, T. K. & Markram, H. A synaptic organizing principle for cortical neuronal groups. Proc. Natl Acad. Sci. USA 108, 5419–5424 (2011)

    Article  ADS  CAS  Google Scholar 

  5. Ko, H. et al. Functional specificity of local synaptic connections in neocortical networks. Nature 473, 87–91 (2011)

    Article  ADS  CAS  Google Scholar 

  6. Yoshimura, Y., Dantzker, J. L. M. & Callaway, E. M. Excitatory cortical neurons form fine-scale functional networks. Nature 433, 868–873 (2005)

    Article  ADS  CAS  Google Scholar 

  7. Yu, Y.-C. et al. Preferential electrical coupling regulates neocortical lineage-dependent microcircuit assembly. Nature 486, 113–117 (2012)

    Article  ADS  CAS  Google Scholar 

  8. Yuste, R., Peinado, A. & Katz, L. C. Neuronal domains in developing neocortex. Science 257, 665–669 (1992)

    Article  ADS  CAS  Google Scholar 

  9. Li, Y. et al. Clonally related visual cortical neurons show similar stimulus feature selectivity. Nature 486, 118–121 (2012)

    Article  ADS  CAS  Google Scholar 

  10. Katz, L. C. & Shatz, C. J. Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138 (1996)

    Article  ADS  CAS  Google Scholar 

  11. White, L. E. & Fitzpatrick, D. Vision and cortical map development. Neuron 56, 327–338 (2007)

    Article  CAS  Google Scholar 

  12. Huberman, A. D., Feller, M. B. & Chapman, B. Mechanisms underlying development of visual maps and receptive fields. Annu. Rev. Neurosci. 31, 479–509 (2008)

    Article  CAS  Google Scholar 

  13. Innocenti, G. M. & Price, D. J. Exuberance in the development of cortical networks. Nature Rev. Neurosci. 6, 955–965 (2005)

    Article  CAS  Google Scholar 

  14. Purves, D., White, L. E. & Riddle, D. R. Is neural development Darwinian? Trends Neurosci. 19, 460–464 (1996)

    Article  CAS  Google Scholar 

  15. Mrsic-Flogel, T. D. et al. Homeostatic regulation of eye-specific responses in visual cortex during ocular dominance plasticity. Neuron 54, 961–972 (2007)

    Article  CAS  Google Scholar 

  16. Smith, S. L. & Häusser, M. Parallel processing of visual space by neighboring neurons in mouse visual cortex. Nature Neurosci. 13, 1144–1149 (2010)

    Article  CAS  Google Scholar 

  17. Bonin, V., Histed, M. H., Yurgenson, S. & Reid, R. C. Local diversity and fine-scale organization of receptive fields in mouse visual cortex. J. Neurosci. 31, 18506–18521 (2011)

    Article  CAS  Google Scholar 

  18. Hubel, D. H. & Wiesel, T. N. Receptive fields of cells in striate cortex of very young, visually inexperienced kittens. J. Neurophysiol. 26, 994–1002 (1963)

    Article  CAS  Google Scholar 

  19. Chapman, B. & Stryker, M. P. Development of orientation selectivity in ferret visual cortex and effects of deprivation. J. Neurosci. 13, 5251–5262 (1993)

    Article  CAS  Google Scholar 

  20. Krug, K., Akerman, C. J. & Thompson, I. D. Responses of neurons in neonatal cortex and thalamus to patterned visual stimulation through the naturally closed lids. J. Neurophysiol. 85, 1436–1443 (2001)

    Article  CAS  Google Scholar 

  21. Rochefort, N. L. et al. Development of direction selectivity in mouse cortical neurons. Neuron 71, 425–432 (2011)

    Article  CAS  Google Scholar 

  22. White, L. E., Coppola, D. M. & Fitzpatrick, D. The contribution of sensory experience to the maturation of orientation selectivity in ferret visual cortex. Nature 411, 1049–1052 (2001)

    Article  ADS  CAS  Google Scholar 

  23. Stosiek, C., Garaschuk, O., Holthoff, K. & Konnerth, A. In vivo two-photon calcium imaging of neuronal networks. Proc. Natl Acad. Sci. USA 100, 7319–7324 (2003)

    Article  ADS  CAS  Google Scholar 

  24. Smyth, D., Willmore, B., Baker, G. E., Thompson, I. D. & Tolhurst, D. J. The receptive-field organization of simple cells in primary visual cortex of ferrets under natural scene stimulation. J. Neurosci. 23, 4746–4759 (2003)

    Article  CAS  Google Scholar 

  25. Hofer, S. B. et al. Differential connectivity and response dynamics of excitatory and inhibitory neurons in visual cortex. Nature Neurosci. 14, 1045–1052 (2011)

    Article  CAS  Google Scholar 

  26. Reid, R. C. & Alonso, J. M. Specificity of monosynaptic connections from thalamus to visual cortex. Nature 378, 281–284 (1995)

    Article  ADS  CAS  Google Scholar 

  27. Clopath, C., Büsing, L., Vasilaki, E. & Gerstner, W. Connectivity reflects coding: a model of voltage-based STDP with homeostasis. Nature Neurosci. 13, 344–352 (2010)

    Article  CAS  Google Scholar 

  28. Ohtsuki, G. et al. Similarity of visual selectivity among clonally related neurons in visual cortex. Neuron 75, 65–72 (2012)

    Article  CAS  Google Scholar 

  29. Callaway, E. M. & Katz, L. C. Emergence and refinement of clustered horizontal connections in cat striate cortex. J. Neurosci. 10, 1134–1153 (1990)

    Article  CAS  Google Scholar 

  30. Ruthazer, E. S. & Stryker, M. P. The role of activity in the development of long-range horizontal connections in area 17 of the ferret. J. Neurosci. 16, 7253–7269 (1996)

    Article  CAS  Google Scholar 

  31. Nimmerjahn, A., Kirchhoff, F., Kerr, J. N. D. & Helmchen, F. Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo. Nature Methods 1, 31–37 (2004)

    Article  CAS  Google Scholar 

  32. Brainard, D. H. The psychophysics toolbox. Spat. Vis. 10, 433–436 (1997)

    Article  CAS  Google Scholar 

  33. Pelli, D. G. The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat. Vis. 10, 437–442 (1997)

    Article  CAS  Google Scholar 

  34. Vogelstein, J. T. et al. Fast nonnegative deconvolution for spike train inference from population calcium imaging. J. Neurophysiol. 104, 3691–3704 (2010)

    Article  Google Scholar 

  35. Ringach, D. L. Mapping receptive fields in primary visual cortex. J. Physiol. (Lond.) 558, 717–728 (2004)

    Article  CAS  Google Scholar 

  36. Sjöström, P. J., Turrigiano, G. G. & Nelson, S. B. Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron 32, 1149–1164 (2001)

    Article  Google Scholar 

  37. Agresti, A. Categorical Data Analysis 2nd edn 181–182 (Wiley-Interscience, 2002)

    Book  Google Scholar 

  38. Frick, A., Feldmeyer, D. & Sakmann, B. Postnatal development of synaptic transmission in local networks of L5A pyramidal neurons in rat somatosensory cortex. J. Physiol. (Lond.) 585, 103–116 (2007)

    Article  CAS  Google Scholar 

  39. Brette, R. & Gerstner, W. Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J. Neurophysiol. 94, 3637–3642 (2005)

    Article  Google Scholar 

  40. Shouval, H. Z., Bear, M. F. & Cooper, L. N. A unified model of NMDA receptor-dependent bidirectional synaptic plasticity. Proc. Natl Acad. Sci. USA 99, 10831–10836 (2002)

    Article  ADS  CAS  Google Scholar 

  41. Badel, L. et al. Dynamic I-V curves are reliable predictors of naturalistic pyramidal-neuron voltage traces. J. Neurophysiol. 99, 656–666 (2008)

    Article  MathSciNet  Google Scholar 

  42. O’Connor, D. H., Wittenberg, G. M. & Wang, S. S.-H. Dissection of bidirectional synaptic plasticity into saturable unidirectional processes. J. Neurophysiol. 94, 1565–1573 (2005)

    Article  Google Scholar 

  43. Artola, A., Bröcher, S. & Singer, W. Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex. Nature 347, 69–72 (1990)

    Article  ADS  CAS  Google Scholar 

  44. Turrigiano, G. G. & Nelson, S. B. Homeostatic plasticity in the developing nervous system. Nature Rev. Neurosci. 5, 97–107 (2004)

    Article  CAS  Google Scholar 

  45. Gerstner, W., Kempter, R., Van Hemmen, J. L. & Wagner, H. A neuronal learning rule for sub-millisecond temporal coding. Nature 383, 76–78 (1996)

    Article  ADS  CAS  Google Scholar 

  46. Pfister, J.-P. & Gerstner, W. Triplets of spikes in a model of spike timing-dependent plasticity. J. Neurosci. 26, 9673–9682 (2006)

    Article  CAS  Google Scholar 

  47. Ostojic, S., Brunel, N. & Hakim, V. Synchronization properties of networks of electrically coupled neurons in the presence of noise and heterogeneities. J. Comput. Neurosci. 26, 369–392 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank C. Akerman, D. Attwell, R. Froemke, M. Hausser, C. Levelt, C. Lohmann, T. Margrie, J. Sjostrom and members of the Mrsic-Flogel laboratory for advice and comments on the manuscript. We thank D. Farquarson, D. Halpin, A. Hogben of the University College London machine shop for custom parts. The work was supported by the Wellcome Trust (T.D.M.-F., S.B.H., C.B.), the Medical Research Council (L.C.), the European Research Council and the 7th Framework of European Commission ‘EuroV1sion’ grant (T.D.M.-F.), and the Swiss National Science Foundation (C.C., grant no. PA00P3_139703).

Author information

Authors and Affiliations

Authors

Contributions

H.K. and S.B.H. performed the in vivo and in vitro experiments and data analysis. S.B.H. performed the RF mapping experiments, and L.C. analysed the RF data with help from J.A. L.C., C.B. and C.C. extended the network model originally developed by C.C. H.K., L.C., S.B.H. and T.D.M.-F. wrote the manuscript. All authors discussed the data and commented on the manuscript.

Corresponding authors

Correspondence to Sonja B. Hofer or Thomas D. Mrsic-Flogel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-4. (PDF 545 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ko, H., Cossell, L., Baragli, C. et al. The emergence of functional microcircuits in visual cortex. Nature 496, 96–100 (2013). https://doi.org/10.1038/nature12015

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12015

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing