Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Bell violation using entangled photons without the fair-sampling assumption

Abstract

The violation of a Bell inequality is an experimental observation that forces the abandonment of a local realistic viewpoint—namely, one in which physical properties are (probabilistically) defined before and independently of measurement, and in which no physical influence can propagate faster than the speed of light1,2. All such experimental violations require additional assumptions depending on their specific construction, making them vulnerable to so-called loopholes. Here we use entangled photons to violate a Bell inequality while closing the fair-sampling loophole, that is, without assuming that the sample of measured photons accurately represents the entire ensemble3. To do this, we use the Eberhard form of Bell’s inequality, which is not vulnerable to the fair-sampling assumption and which allows a lower collection efficiency than other forms4. Technical improvements of the photon source5,6 and high-efficiency transition-edge sensors7 were crucial for achieving a sufficiently high collection efficiency. Our experiment makes the photon the first physical system for which each of the main loopholes has been closed, albeit in different experiments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principle of the experiment.
Figure 2: Measurement set-up.
Figure 3: Eberhard J value computed from up to five measurements of recorded data.

Similar content being viewed by others

References

  1. Einstein, A., Podolsky, B. & Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)

    Article  CAS  ADS  Google Scholar 

  2. Bell, J. S. On the Einstein Podolsky Rosen paradox. Physics 1, 195 (1964)

    Article  MathSciNet  Google Scholar 

  3. Pearle, P. M. Hidden-variable example based upon data rejection. Phys. Rev. D 2, 1418–1425 (1970)

    Article  ADS  Google Scholar 

  4. Eberhard, P. H. Background level and counter efficiencies required for a loophole-free Einstein-Podolsky-Rosen experiment. Phys. Rev. A 47, 747–750 (1993)

    Article  ADS  Google Scholar 

  5. Fedrizzi, A., Herbst, T., Poppe, A., Jennewein, T. & Zeilinger, A. A wavelength-tunable, fiber-coupled source of narrowband entangled photons. Opt. Express 15, 15377–15386 (2007)

    Article  CAS  ADS  Google Scholar 

  6. Ramelow, S. et al. Highly efficient heralding of entangled single photons. Opt. Express 21, 6707–6717 (2013)

    Article  ADS  Google Scholar 

  7. Lita, A. E., Miller, A. J. & Nam, S. W. Counting near-infrared single-photons with 95% efficiency. Opt. Express 16, 3032–3040 (2008)

    Article  ADS  Google Scholar 

  8. Garg, A. & Mermin, N. D. Detector inefficiencies in the Einstein-Podolsky-Rosen experiment. Phys. Rev. D 35, 3831–3835 (1987)

    Article  CAS  ADS  Google Scholar 

  9. Rowe, M. A. et al. Experimental violation of a Bell’s inequality with efficient detection. Nature 409, 791–794 (2001)

    Article  CAS  ADS  Google Scholar 

  10. Ansmann, M. et al. Violation of Bell’s inequality in Josephson phase qubits. Nature 461, 504–506 (2009)

    Article  CAS  ADS  Google Scholar 

  11. Alicki, R. Remarks on the violation of Bell’s inequality in Josephson phase qubits. Preprint at http://arxiv.org/abs/0911.4009 (2009)

  12. Matsukevich, D. N., Maunz, P., Moehring, D. L., Olmschenk, S. & Monroe, C. Bell inequality violation with two remote atomic qubits. Phys. Rev. Lett. 100, 150404 (2008)

    Article  CAS  ADS  Google Scholar 

  13. Hofmann, J. et al. Heralded entanglement between widely separated atoms. Science 337, 72–75 (2012)

    Article  CAS  ADS  Google Scholar 

  14. Freedman, S. J. & Clauser, J. F. Experimental test of local hidden-variable theories. Phys. Rev. Lett. 28, 938–941 (1972)

    Article  CAS  ADS  Google Scholar 

  15. Kwiat, P. G. & Eberhard, P. H. Steinberg, A. M. & Chiao, R. Y. Proposal for a loophole-free Bell inequality experiment. Phys. Rev. A 49, 3209–3220 (1994)

    Article  CAS  ADS  Google Scholar 

  16. Rosenfeld, W. et al. Towards a loophole-free test of Bell’s inequality with entangled pairs of neutral atoms. Adv. Sci. Lett. 2, 469–474 (2009)

    Article  CAS  Google Scholar 

  17. Aspect, A., Dalibard, J. & Roger, G. Experimental test of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804–1807 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  18. Weihs, G., Jennewein, T., Simon, C., Weinfurter, H. & Zeilinger, A. Violation of Bell’s inequality under strict Einstein locality conditions. Phys. Rev. Lett. 81, 5039–5043 (1998)

    Article  CAS  ADS  MathSciNet  Google Scholar 

  19. Scheidl, T. et al. Violation of local realism with freedom of choice. Proc. Natl Acad. Sci. USA 107, 19708–19713 (2010)

    Article  CAS  ADS  Google Scholar 

  20. Merali, Z. Quantum mechanics braces for the ultimate test. Science 331, 1380–1382 (2011)

    Article  CAS  ADS  MathSciNet  Google Scholar 

  21. Smith, D. H. et al. Conclusive quantum steering with superconducting transition-edge sensors. Nature Commun. 3, 625–631 (2012)

    Article  ADS  Google Scholar 

  22. Bennet, A. J. et al. Arbitrarily loss-tolerant Einstein-Podolsky-Rosen steering allowing a demonstration over 1 km of optical fiber with no detection loophole. Phys. Rev. X 2 (3), 031003 (2012)

    Google Scholar 

  23. Wittmann, B. et al. Loophole-free Einstein–Podolsky–Rosen experiment via quantum steering. N. J. Phys. 14, 053030 (2012)

    Article  Google Scholar 

  24. Clauser, J. F. & Horne, M. A. Experimental consequences of objective local theories. Phys. Rev. D 10, 526–535 (1974)

    Article  ADS  Google Scholar 

  25. Brunner, N., Gisin, N., Scarani, V. & Simon, C. Detection loophole in asymmetric Bell experiments. Phys. Rev. Lett. 98, 220403 (2007)

    Article  ADS  Google Scholar 

  26. Vértesi, T., Pironio, S. & Brunner, N. Closing the detection loophole in Bell experiments using qudits. Phys. Rev. Lett. 104, 060401 (2010)

    Article  ADS  Google Scholar 

  27. Clauser, J. F., Horne, M. A., Shimony, A. & Holt, R. A. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969)

    Article  ADS  Google Scholar 

  28. Kim, T., Fiorentino, M. & Wong, F. N. C. Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer. Phys. Rev. A 73, 012316 (2006)

    Article  ADS  Google Scholar 

  29. Drung, D. et al. Highly sensitive and easy-to-use SQUID sensors. IEEE Trans. Appl. Supercond. 17, 699–704 (2007)

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge M. Schmidt of Physikalisch-Technische Bundesanstalt in Berlin, Germany, for assistance with setting up the TES-SQUID system. This work was supported by the ERC (Advanced Grant number QIT4QAD 227844), the Austrian Science Fund (FWF) under projects SFB F4008 and CoQuS, the grant Q-ESSENCE (number 248095), QAP (number 15848), the Marie Curie Research Training Network EMALI (number MRTN-CT-2006-035369) and the John Templeton Foundation. This work was also supported by the NIST Quantum Information Science Initiative (QISI), an agency of the US Government.

Author information

Authors and Affiliations

Authors

Contributions

M.G. designed and carried out the experiment, and analysed data. A.M. designed and carried out the experiment. S.R. provided theoretical analysis, designed and carried out the experiment, and analysed data. B.W. designed and carried out the experiment. J.K. provided theoretical analysis, and analysed data. J.B., A.L., B.C., T.G. and S.W.N. provided experimental and conceptual assistance. R.U. designed the experiment and provided experimental, organizational and conceptual assistance. A.Z. conceived the research and guided the experiment. All authors wrote the manuscript.

Corresponding authors

Correspondence to Marissa Giustina or Anton Zeilinger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giustina, M., Mech, A., Ramelow, S. et al. Bell violation using entangled photons without the fair-sampling assumption. Nature 497, 227–230 (2013). https://doi.org/10.1038/nature12012

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12012

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing