Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

High-fidelity readout and control of a nuclear spin qubit in silicon

Abstract

Detection of nuclear spin precession is critical for a wide range of scientific techniques that have applications in diverse fields including analytical chemistry, materials science, medicine and biology. Fundamentally, it is possible because of the extreme isolation of nuclear spins from their environment. This isolation also makes single nuclear spins desirable for quantum-information processing, as shown by pioneering studies on nitrogen-vacancy centres in diamond1,2,3,4. The nuclear spin of a 31P donor in silicon is very promising as a quantum bit5: bulk measurements indicate that it has excellent coherence times6,7 and silicon is the dominant material in the microelectronics industry. Here we demonstrate electrical detection and coherent manipulation of a single 31P nuclear spin qubit with sufficiently high fidelities for fault-tolerant quantum computing8. By integrating single-shot readout of the electron spin9 with on-chip electron spin resonance10, we demonstrate quantum non-demolition11 and electrical single-shot readout of the nuclear spin with a readout fidelity higher than 99.8 per cent—the highest so far reported for any solid-state qubit. The single nuclear spin is then operated as a qubit by applying coherent radio-frequency pulses. For an ionized 31P donor, we find a nuclear spin coherence time of 60 milliseconds and a one-qubit gate control fidelity exceeding 98 per cent. These results demonstrate that the dominant technology of modern electronics can be adapted to host a complete electrical measurement and control platform for nuclear-spin-based quantum-information processing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Qubit nanostructure, spin transitions and electron spin resonance spectra.
Figure 2: Nuclear spin quantum jumps, readout error and lifetimes.
Figure 3: NMR spectra and Rabi oscillations of a single 31P nuclear spin.
Figure 4: Ramsey fringes and spin-echo decay.

Similar content being viewed by others

References

  1. Jelezko, F. et al. Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. Phys. Rev. Lett. 93, 130501 (2004)

    Article  ADS  CAS  Google Scholar 

  2. Neumann, P. et al. Single-shot readout of a single nuclear spin. Science 329, 542–544 (2010)

    Article  ADS  CAS  Google Scholar 

  3. Maurer, P. C. et al. Room-temperature quantum bit memory exceeding one second. Science 336, 1283–1286 (2012)

    Article  ADS  CAS  Google Scholar 

  4. Pfaff, W. et al. Demonstration of entanglement-by-measurement of solid-state qubits. Nature Phys. 9, 29–33 (2013)

    Article  ADS  CAS  Google Scholar 

  5. Kane, B. E. A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998)

    Article  ADS  CAS  Google Scholar 

  6. Steger, M. et al. Quantum information storage for over 180 s using donor spins in a 28Si ‘semiconductor vacuum’. Science 336, 1280–1283 (2012)

    Article  ADS  CAS  Google Scholar 

  7. Morton, J. J. L. et al. Solid-state quantum memory using the 31P nuclear spin. Nature 455, 1085–1088 (2008)

    Article  ADS  CAS  Google Scholar 

  8. Knill, E. Quantum computing with realistically noisy devices. Nature 434, 39–44 (2005)

    Article  ADS  CAS  Google Scholar 

  9. Morello, A. et al. Single-shot readout of an electron spin in silicon. Nature 467, 687–691 (2010)

    Article  ADS  CAS  Google Scholar 

  10. Pla, J. J. et al. A single-atom electron spin qubit in silicon. Nature 489, 541–545 (2012)

    Article  ADS  CAS  Google Scholar 

  11. Braginsky, V. B., Khalili, F. & Ya Quantum nondemolition measurements: the route from toys to tools. Rev. Mod. Phys. 68, 1–11 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  12. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000)

    MATH  Google Scholar 

  13. Myerson, A. H. et al. High-fidelity read-out of trapped-ion qubits. Phys. Rev. Lett. 100, 200502 (2008)

    Article  ADS  CAS  Google Scholar 

  14. Brown, K. R. et al. Single-qubit-gate error below 10−4 in a trapped ion. Phys. Rev. A 84, 030303(R) (2011)

    Article  ADS  Google Scholar 

  15. Clarke, J. & Wilhelm, F. K. Superconducting quantum bits. Nature 453, 1031–1042 (2008)

    Article  ADS  CAS  Google Scholar 

  16. Hanson, R. & Awschalom, D. D. Coherent manipulation of single spins in semiconductors. Nature 453, 1043–1049 (2008)

    Article  ADS  CAS  Google Scholar 

  17. Becker, P., Pohl, H. J., Riemann, H. & Abrosimov, N. Enrichment of silicon for a better kilogram. Phys. Status Solidi A 207, 49–66 (2010)

    Article  ADS  CAS  Google Scholar 

  18. McCamey, D. R., Van Tol, J., Morley, G. W. & Boehme, C. Electronic spin storage in an electrically readable nuclear spin memory with a lifetime > 100 seconds. Science 330, 1652–1656 (2010)

    Article  ADS  CAS  Google Scholar 

  19. Vincent, R., Klyatskaya, S., Ruben, M., Wernsdorfer, W. & Balestro, F. Electronic read-out of a single nuclear spin using a molecular spin transistor. Nature 488, 357–360 (2012)

    Article  ADS  CAS  Google Scholar 

  20. Morello, A. et al. Architecture for high-sensitivity single-shot readout and control of the electron spin of individual donors in silicon. Phys. Rev. B 80, 081307(R) (2009)

    Article  ADS  Google Scholar 

  21. Jamieson, D. N. et al. Controlled shallow single-ion implantation in silicon using an active substrate for sub-20-keV ions. Appl. Phys. Lett. 86, 202101 (2005)

    Article  ADS  Google Scholar 

  22. Angus, S. J., Ferguson, A. J., Dzurak, A. S. & Clark, R. G. Gate-defined quantum dots in intrinsic silicon. Nano Lett. 7, 2051–2055 (2007)

    Article  ADS  CAS  Google Scholar 

  23. Steger, M. et al. Optically-detected NMR of optically-hyperpolarized 31P neutral donors in 28Si. J. Appl. Phys. 109, 102411 (2011)

    Article  ADS  Google Scholar 

  24. Feher, G. Electron spin resonance experiments on donors in silicon. I. Electronic structure of donors by the electron nuclear double resonance technique. Phys. Rev. 114, 1219–1244 (1959)

    Article  ADS  CAS  Google Scholar 

  25. Dehollain, J. P. et al. Nanoscale broadband transmission lines for spin qubit control. Nanotechnology 24, 015202 (2013)

    Article  ADS  CAS  Google Scholar 

  26. Pines, D., Bardeen, J. & Slichter, C. P. Nuclear polarization and impurity-state spin relaxation processes in silicon. Phys. Rev. 106, 489–498 (1957)

    Article  ADS  CAS  Google Scholar 

  27. Dreher, L., Hoehne, F., Stutzmann, M. & Brandt, M. S. Nuclear spins of ionized phosphorus donors in silicon. Phys. Rev. Lett. 108, 027602 (2012)

    Article  ADS  Google Scholar 

  28. Witzel, W. M., Carroll, M. S., Cywinski, Ł. & Das Sarma, S. Quantum decoherence of the central spin in a sparse system of dipolar coupled spins. Phys. Rev. B 86, 035452 (2012)

    Article  ADS  Google Scholar 

  29. Mehring, M., Mende, J. & Scherer, W. Entanglement between an electron and a nuclear spin 1/2. Phys. Rev. Lett. 90, 153001 (2003)

    Article  ADS  CAS  Google Scholar 

  30. Simmons, S. et al. Entanglement in a solid-state spin ensemble. Nature 470, 69–72 (2011)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. P. Starrett, D. Barber, C. Y. Yang and R. Szymanski for technical assistance and A. Laucht, R. Kalra and J. Muhonen for discussions. This research was funded by the Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology (project number CE11E0096) and the US Army Research Office (W911NF-13-1-0024). We acknowledge support from the Australian National Fabrication Facility.

Author information

Authors and Affiliations

Authors

Contributions

K.Y.T. and W.H.L. fabricated the device; D.N.J. designed the P implantation experiments; J.J.P., K.Y.T., J.J.L.M., J.P.D. and F.A.Z. performed the measurements; J.J.P., A.M., A.S.D. and J.J.L.M. designed the experiments and discussed the results; J.J.P. and A.M. analysed the data; and J.J.P. and A.M. wrote the manuscript with input from all co-authors.

Corresponding author

Correspondence to Andrea Morello.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains supplementary Text and Data 1-8, Supplementary Figures 1-4 and additional references. (PDF 656 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pla, J., Tan, K., Dehollain, J. et al. High-fidelity readout and control of a nuclear spin qubit in silicon. Nature 496, 334–338 (2013). https://doi.org/10.1038/nature12011

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12011

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing