Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Colossal injection of catalyst atoms into silicon nanowires

Abstract

The incorporation of impurities during the growth of nanowires from the vapour phase alters their basic properties substantially, and this process is critical in an extended range of emerging nanometre-scale technologies1,2,3,4. In particular, achieving precise control of the behaviour of group III and group V dopants has been a crucial step in the development of silicon (Si) nanowire-based devices5,6,7. Recently8,9,10,11 it has been demonstrated that the use of aluminium (Al) as a growth catalyst, instead of the usual gold, also yields an effective p-type doping, thereby enabling a novel and efficient route to functionalizing Si nanowires. Besides the technological implications, this self-doping implies the detachment of Al from the catalyst and its injection into the growing nanowire, involving atomic-scale processes that are crucial for the fundamental understanding of the catalytic assembly of nanowires. Here we present an atomic-level, quantitative study of this phenomenon of catalyst dissolution by three-dimensional atom-by-atom mapping of individual Al-catalysed Si nanowires using highly focused ultraviolet-laser-assisted atom-probe tomography. Although the observed incorporation of the catalyst atoms into nanowires exceeds by orders of magnitude the equilibrium solid solubility12 and solid-solution concentrations in known non-equilibrium processes13,14, the Al impurities are found to be homogeneously distributed in the nanowire and do not form precipitates or clusters. As well as the anticipated effect on the electrical properties, this kinetics-driven colossal injection also has direct implications for nanowire morphology. We discuss the observed strong deviation from equilibrium using a model of solute trapping at step edges, and identify the key growth parameters behind this phenomenon on the basis of a kinetic model of step-flow growth of nanowires. The control of this phenomenon provides opportunities to create a new class of nanoscale devices by precisely tailoring the shape and composition of metal-catalysed nanowires.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and three-dimensional map of Al-catalysed Si nanowires.
Figure 2: APT data obtained for a catalyst nanoparticle and a Si nanowire.
Figure 3: Al concentration profiles in individual nanowires.
Figure 4: Calculations of partition coefficient and diffusive velocity.

Similar content being viewed by others

References

  1. Yan, H. et al. Programmable nanowire circuits for nanoprocessors. Nature 470, 240–244 (2011)

    Article  ADS  CAS  Google Scholar 

  2. Kelzenberg, M. D. et al. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nature Mater. 9, 239–244 (2010)

    Article  ADS  CAS  Google Scholar 

  3. Hochbaum, A. & Yang, P. Semiconductor nanowires for energy conversion. Chem. Rev. 110, 527–546 (2010)

    Article  CAS  Google Scholar 

  4. Xie, P., Xiong, Q., Fang, Y., Qing, Q. & Lieber, C. M. Local electrical potential detection of DNA by nanowire–nanopore sensors. Nature Nanotechnol. 7, 119–125 (2011)

    Article  ADS  Google Scholar 

  5. Perea, D. E. et al. Direct measurement of dopant distribution in an individual vapor–liquid–solid nanowire. Nature Nanotechnol. 4, 315–319 (2009)

    Article  ADS  CAS  Google Scholar 

  6. Hoffmann, S. et al. Axial p-n junctions realized in silicon nanowires by ion implantation. Nano Lett. 9, 1341–1344 (2009)

    Article  ADS  CAS  Google Scholar 

  7. Ho, J. C. et al. Controlled nanoscale doping of semiconductors via molecular monolayers. Nature Mater. 7, 62–67 (2008)

    Article  ADS  CAS  Google Scholar 

  8. Wacaser, B. A. et al. Growth system, structure, and doping of aluminum-seeded epitaxial silicon nanowires. Nano Lett. 9, 3296–3301 (2009)

    Article  ADS  CAS  Google Scholar 

  9. Ke, Y. et al. Fabrication and electrical properties of Si nanowires synthesized by Al catalyzed vapor-liquid-solid growth. Nano Lett. 9, 4494–4499 (2009)

    Article  ADS  CAS  Google Scholar 

  10. Moutanabbir, O. et al. Atomically smooth p-doped silicon nanowires catalyzed by aluminum at low temperature. ACS Nano 5, 1313–1320 (2011)

    Article  CAS  Google Scholar 

  11. Choi, S-Y., Fung, W. Y. & Lu, W. Growth and electrical properties of Al-catalyzed Si nanowires. Appl. Phys. Lett. 98, 033108 (2011)

    Article  ADS  Google Scholar 

  12. Trumbore, F. A. Solid solubilities of impurity elements in germanium and silicon. Bell Syst. Tech. J. 30, 205–233 (1960)

    Article  Google Scholar 

  13. Nast, O. & Wenham, S. R. Elucidation of the layer exchange mechanism in the formation of polycrystalline silicon by aluminum-induced crystallization. J. Appl. Phys. 88, 124–132 (2000)

    Article  ADS  CAS  Google Scholar 

  14. Civale, Y., Nanver, L. K., Alberici, S. G., Gammon, A. & Kelly, I. Accurate SIMS doping profiling of aluminum-doped solid-phase epitaxy silicon islands. Electrochem. Solid-State Lett. 11, H74–H76 (2008)

    Article  CAS  Google Scholar 

  15. Wang, Y., Schmidt, V., Senz, S. & Gösele, U. Epitaxial growth of silicon nanowires using aluminium catalyst. Nature Nanotechnol. 1, 186–189 (2006)

    Article  ADS  CAS  Google Scholar 

  16. Kim, B. J. et al. Kinetics of individual nucleation events observed in nanoscale vapor-liquid-solid growth. Science 322, 1070–1073 (2008)

    Article  ADS  CAS  Google Scholar 

  17. Seidman, D. N. & Stiller, K. An atom-probe tomography primer. Mater. Res. Soc. Bull. 34, 717–724 (2009)

    Article  Google Scholar 

  18. Moutanabbir, O., Isheim, D., Seidman, D. N., Kawamura, Y. & Itoh, K. M. Ultraviolet-laser atom-probe tomographic three-dimensional atom-by-atom mapping of isotopically modulated Si nanoscopic layers. Appl. Phys. Lett. 98, 013111 (2011)

    Article  ADS  Google Scholar 

  19. Murray, J. L. & McAlister, A. J. The Al-Si (aluminum-silicon) system. Bull. Alloy Phase Diagrams 5, 74–84 (1984)

    Article  CAS  Google Scholar 

  20. Hannon, J. B., Kodambaka, S., Ross, F. M. & Tromp, R. M. The influence of the surface migration of gold on the growth of silicon nanowires. Nature 440, 69–71 (2006)

    Article  ADS  CAS  Google Scholar 

  21. Trumbore, F. A. Solid solubilities of impurity elements in germanium and silicon. Bell Syst. Tech. J. 30, 205–233 (1960)

    Article  Google Scholar 

  22. Schwalbach, E. J. & Voorhees, P. W. Phase equilibrium in VLS-grown nanowires. Nano Lett. 8, 3739–3745 (2008)

    Article  ADS  CAS  Google Scholar 

  23. Baker, J. C. & Cahn, J. W. Solute trapping by rapid solidification. Acta Metall. 17, 575–578 (1969)

    Article  CAS  Google Scholar 

  24. White, C. W., Wilson, S. R., Appleton, B. R. & Young, F. W. Supersaturated substitutional alloys formed by ion implantation and pulsed laser annealing of group-III and group-V dopants in silicon. J. Appl. Phys. 51, 738–749 (1980)

    Article  ADS  CAS  Google Scholar 

  25. Reitano, R., Smith, P. M. & Aziz, M. J. Solute trapping of group III, IV, and V elements in silicon by an aperiodic stepwise growth mechanism. J. Appl. Phys. 76, 1518–1529 (1994)

    Article  ADS  CAS  Google Scholar 

  26. Wen, C.-Y., Tersoff, J., Reuter, M. C., Stach, E. A. & Ross, F. M. Step-flow kinetics in nanowire growth. Phys. Rev. Lett. 105, 195502 (2010)

    Article  ADS  Google Scholar 

  27. Aziz, M. J. M. J. Model for solute redistribution during rapid solidification. J. Appl. Phys. 53, 1158–1168 (1982)

    Article  ADS  CAS  Google Scholar 

  28. Goldman, L. M. & Aziz, M. J. Aperiodic stepwise growth model for the velocity and orientation dependence of solute trapping. J. Mater. Res. 2, 524–527 (1987)

    Article  ADS  CAS  Google Scholar 

  29. Wen, C.-Y. et al. Formation of compositionally abrupt axial heterojunctions in silicon-germanium nanowires. Science 326, 1247–1250 (2009)

    Article  ADS  CAS  Google Scholar 

  30. Kodambaka, S., Tersoff, J., Reuter, M. C. & Ross, F. M. Germanium nanowire growth below the eutectic temperature. Science 316, 729–732 (2007)

    Article  ADS  CAS  Google Scholar 

  31. Kumar, R., Narasimha Raoa, K. & Phanib, A. R. Bismuth catalyzed growth of silicon nanowires by electron beam evaporation. Mater. Lett. 82, 163–166 (2012)

    Article  CAS  Google Scholar 

  32. Heitsch, A. T., Fanfair, D. D., Tuan, H. Y. & Korgel, B. A. solution−liquid−solid (SLS) growth of silicon nanowires. J. Am. Chem. Soc. 130, 5436–5437 (2008)

    Article  CAS  Google Scholar 

  33. Givargizov, E. I. & Sheftal, N. N. Morphology of silicon whiskers grown by the VLS-technique. J. Cryst. Growth 9, 326–329 (1971)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

O.M. acknowledges support from NSERC, the Canada Research Chair, and École Polytechnique de Montréal (PIED). S.S. is grateful to Y. Wang for help in the growth of nanowires. The atom-probe tomography research was performed in the Northwestern University Center for Atom-Probe Tomography (NUCAPT), with partial support from the US-Israel Binational Science Foundation and the Max Planck Institute of Microstructure Physics.

Author information

Authors and Affiliations

Authors

Contributions

O.M. led this research, analysed the data, developed the theoretical models, and wrote the manuscript. All authors commented on the manuscript. O.M., D.I. and D.N.S. designed the atom probe work. O.M. and S.S. discussed the initial experimental work. Nanowire growth was done using equipment maintained by S.S.. O.M. and H.B. established the FIB processing for LEAP specimens and H.B. conducted the FIB work. D.I. performed the atom probe analysis. E.P. did the TEM and EDX analyses. .

Corresponding author

Correspondence to Oussama Moutanabbir.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-18, Supplementary Text and Data and Supplementary References. (PDF 3974 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moutanabbir, O., Isheim, D., Blumtritt, H. et al. Colossal injection of catalyst atoms into silicon nanowires. Nature 496, 78–82 (2013). https://doi.org/10.1038/nature11999

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11999

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing