Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Climatic control of bedrock river incision


Bedrock river incision drives the development of much of Earth’s surface topography1,2,3, and thereby shapes the structure of mountain belts4 and modulates Earth’s habitability through its effects on soil erosion5, nutrient fluxes6 and global climate7. Although it has long been expected that river incision rates should depend strongly on precipitation rates, quantifying the effects of precipitation rates on bedrock river incision rates has proved difficult, partly because river incision rates are difficult to measure and partly because non-climatic factors can obscure climatic effects at sites where river incision rates have been measured8,9. Here we present measurements of river incision rates across one of Earth’s steepest rainfall gradients, which show that precipitation rates do indeed influence long-term bedrock river incision rates. We apply a widely used empirical law for bedrock river incision3,9,10,11 to a series of rivers on the Hawaiian island of Kaua‘i, where mean annual precipitation ranges from 0.5 metres to 9.5 metres (ref. 12)—over 70 per cent of the global range13—and river incision rates averaged over millions of years can be inferred from the depth of river canyons and the age of the volcanic bedrock. Both a time-averaged analysis and numerical modelling of transient river incision reveal that the long-term efficiency of bedrock river incision across Kaua‘i is positively correlated with upstream-averaged mean annual precipitation rates. We provide theoretical context for this result by demonstrating that our measurements are consistent with a linear dependence of river incision rates on stream power, the rate of energy expenditure by the flow on the riverbed. These observations provide rare empirical evidence for the long-proposed coupling between climate and river incision, suggesting that previously proposed feedbacks among topography, climate and tectonics may occur.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Rainfall across Kaua‘i.
Figure 2: Transient model of river incision.
Figure 3: Influence of precipitation rate on the efficiency of river incision.
Figure 4: Dependence of river incision rate on stream power.


  1. Howard, A. D. A detachment-limited model of drainage-basin evolution. Wat. Resour. Res. 30, 2261–2285 (1994)

    ADS  Article  Google Scholar 

  2. Whipple, K. X. Bedrock rivers and the geomorphology of active orogens. Annu. Rev. Earth Planet. Sci. 32, 151–185 (2004)

    ADS  CAS  Article  Google Scholar 

  3. Seidl, M. A. & Dietrich, W. E. The problem of channel erosion into bedrock. Catena Suppl. 23101–124 (1992)

  4. Willett, S. D. Orogeny and orography: the effects of erosion on the structure of mountain belts. J. Geophys. Res. Solid Earth 104, 28957–28981 (1999)

    Article  Google Scholar 

  5. Fernandes, N. F. & Dietrich, W. E. Hillslope evolution by diffusive processes: the timescale for equilibrium adjustments. Wat. Resour. Res. 33, 1307–1318 (1997)

    ADS  Article  Google Scholar 

  6. Riebe, C. S., Kirchner, J. W. & Finkel, R. C. Erosional and climatic effects on long-term chemical weathering rates in granitic landscapes spanning diverse climate regimes. Earth Planet. Sci. Lett. 224, 547–562 (2004)

    ADS  CAS  Article  Google Scholar 

  7. Raymo, M. E., Ruddiman, W. F. & Froelich, P. N. Influence of late Cenozoic mountain building on ocean geochemical cycles. Geology 16, 649–653 (1988)

    ADS  CAS  Article  Google Scholar 

  8. Snyder, N. P., Whipple, K. X., Tucker, G. E. & Merritts, D. J. Landscape response to tectonic forcing: digital elevation model analysis of stream profiles in the Mendocino triple junction region, northern California. Geol. Soc. Am. Bull. 112, 1250–1263 (2000)

    ADS  Article  Google Scholar 

  9. Stock, J. D. & Montgomery, D. R. Geologic constraints on bedrock river incision using the stream power law. J. Geophys. Res. Solid Earth 104, 4983–4993 (1999)

    Article  Google Scholar 

  10. Howard, A. D. & Kerby, G. Channel changes in badlands. Geol. Soc. Am. Bull. 94, 739–752 (1983)

    ADS  Article  Google Scholar 

  11. Whipple, K. X. & Tucker, G. E. Dynamics of the stream-power river incision model: implications for height limits of mountain ranges, landscape response timescales, and research needs. J. Geophys. Res. Solid Earth 104, 17661–17674 (1999)

    Article  Google Scholar 

  12. PRISM Climate Group. (Oregon State University, 2006)

  13. Poveda, G. & Mesa, O. J. On the existence of Lloro (the rainiest locality on earth): enhanced ocean-land-atmosphere interaction by a low-level jet. Geophys. Res. Lett. 27, 1675–1678 (2000)

    ADS  Article  Google Scholar 

  14. Roe, G. H., Whipple, K. X. & Fletcher, J. K. Feedbacks among climate, erosion, and tectonics in a critical wedge orogen. Am. J. Sci. 308, 815–842 (2008)

    ADS  Article  Google Scholar 

  15. Walling, D. E. & Webb, B. W. in Background to Hydrogeology (ed. Gregory, K. J.) 69–100 (Wiley, 1983)

    Google Scholar 

  16. Burbank, D. W. et al. Decoupling of erosion and precipitation in the Himalayas. Nature 426, 652–655 (2003)

    ADS  CAS  Article  Google Scholar 

  17. Dadson, S. J. et al. Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature 426, 648–651 (2003)

    ADS  CAS  Article  Google Scholar 

  18. Reiners, P. W., Ehlers, T. A., Mitchell, S. G. & Montgomery, D. R. Coupled spatial variations in precipitation and long-term erosion rates across the Washington Cascades. Nature 426, 645–647 (2003)

    ADS  CAS  Article  Google Scholar 

  19. Moon, S. et al. Climatic control of denudation in the deglaciated landscape of the Washington Cascades. Nature Geosci. 4, 469–473 (2011)

    ADS  CAS  Article  Google Scholar 

  20. von Blanckenburg, F. The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment. Earth Planet. Sci. Lett. 237, 462–479 (2005)

    ADS  CAS  Article  Google Scholar 

  21. Riebe, C. S., Kirchner, J. W., Granger, D. E. & Finkel, R. C. Minimal climatic control on erosion rates in the Sierra Nevada, California. Geology 29, 447–450 (2001)

    ADS  CAS  Article  Google Scholar 

  22. Bookhagen, B. & Strecker, M. R. Spatiotemporal trends in erosion rates across a pronounced rainfall gradient: examples from the southern Central Andes. Earth Planet. Sci. Lett. 327–328, 97–110 (2012)

    ADS  Article  Google Scholar 

  23. Leopold, L. B. & Maddock, T., Jr The Hydraulic Geometry of Stream Channels and some Physiographic Implications (US Geological Survey Professional Paper 252, 1953)

    Book  Google Scholar 

  24. Montgomery, D. R. & Gran, K. B. Downstream variations in the width of bedrock channels. Wat. Resour. Res. 37, 1841–1846 (2001)

    ADS  Article  Google Scholar 

  25. Dunne, T. & Leopold, L. B. Water in Environmental Planning (W. H. Freeman, 1978)

    Google Scholar 

  26. McDougall, I. Age of shield-building volcanism of Kauai and linear migration of volcanism in the Hawaiian Island chain. Earth Planet. Sci. Lett. 46, 31–42 (1979)

    ADS  CAS  Article  Google Scholar 

  27. Sherrod, D. R., Sinton, J. M., Watkins, S. E. & Brunt, K. M. Geologic Map of the State of Hawai’i Sheet 2 of 8 (US Geological Survey Open-File Report 2007-1089, 2007)

    Google Scholar 

  28. Garcia, M. O. et al. Petrology, geochemistry and geochronology of Kaua‘i lavas over 4.5 Myr: implications for the origin of rejuvenated volcanism and the evolution of the Hawaiian plume. J. Petrol. 51, 1507–1540 (2010)

    ADS  CAS  Article  Google Scholar 

  29. Waiawa 943 Climate Summary (Western Regional Climate Center, Desert Research Institute, 2011)

  30. Mount Waialeale Climate Summary 1047 (Western Regional Climate Center, Desert Research Institute, 2011)

  31. Chadwick, O. A. et al. The impact of climate on the biogeochemical functioning of volcanic soils. Chem. Geol. 202, 195–223 (2003)

    ADS  CAS  Article  Google Scholar 

  32. Clague, D. A. & Dalrymple, G. B. Age and petrology of alkalic postshield and rejuvenated-stage lava from Kauai, Hawaii. Contrib. Mineral. Petrol. 99, 202–218 (1988)

    ADS  CAS  Article  Google Scholar 

  33. Gayer, E. Mukhopadhyay, S. & Meade, B. J. Spatial variability of erosion rates inferred from the frequency distribution of cosmogenic 3He in olivines from Hawaiian river sediments. Earth Planet. Sci. Lett. 266, 303–315 (2008)

  34. Ferrier, K. L. et al. Covariation of climate and long-term erosion rates across a steep rainfall gradient on the Hawaiian island of Kaua‘i. Geol. Soc. Am. Bull. (in the press)

  35. Gesch, D. et al. The National Elevation Dataset. Photogramm. Eng. Remote Sensing 68, 5–11 (2002)

    Google Scholar 

  36. Brocklehurst, S. H. & Whipple, K. X. Glacial erosion and relief production in the Eastern Sierra Nevada, California. Geomorphology 42, 1–24 (2002)

    ADS  Article  Google Scholar 

  37. O'Callaghan, J. F. & Mark, D. M. The extraction of drainage networks from digital elevation data. Computer Vision Graph. Image Process. 28, 323–344 (1984)

    Article  Google Scholar 

  38. Wobus, C. et al. in Tectonics, Climate, and Landscape Evolution (eds Willett, S. D., Hovius, N., Brandon, M. T. & Fisher, D. M.) Vol. 398, 55–74 (Geological Society of America Special Papers, 2006)

  39. Daly, C., Gibson, W. P., Taylor, G. H., Johnson, G. L. & Pasteris, P. A knowledge-based approach to the statistical mapping of climate. Clim. Res. 22, 99–113 (2002)

    Article  Google Scholar 

  40. Press, W. H. Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. Numerical recipes in C 2nd edn (Cambridge Univ. Press, 1992)

  41. Seidl, M. A., Dietrich, W. E. & Kirchner, J. W. Longitudinal profile development into bedrock—an analysis of Hawaiian channels. J. Geol. 102, 457–474 (1994)

    ADS  Article  Google Scholar 

  42. US Geological Survey USGS Water Data for the Nation (National Water Information System, 2012)

  43. Wohl, E. & David, G. C. L. Consistency of scaling relations among bedrock and alluvial channels. J. Geophys. Res. Earth Surf.. 113, (2008)

Download references


This study was supported by the Massachusetts Institute of Technology. We thank M. Slosberg for assistance with topographic analyses, S. Willett for comments that improved the manuscript and M. Rosener, S. Mukhopadhyay, M. Lamb, B. Mackey, J. Scheingross, J. Stock and C. Blay for field assistance and discussions. We thank the State of Hawaii Agribusiness Development Corporation, Landis Ignacio of the Kekaha Agriculture Association, the State of Hawaii Department of Land and Natural Resources, Divisions of State Parks and of Forestry and Wildlife, the US Fish and Wildlife Service and the Alapai and Napolis families for field access.

Author information

Authors and Affiliations



K.L.F. and K.L.H. performed the topographic analyses, K.L.H. and J.T.P. conducted the channel evolution modelling, all authors conducted the field work and analysed the data and K.L.F. wrote the paper with input from the other authors.

Corresponding author

Correspondence to Ken L. Ferrier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

This file contains Supplementary Text and Data, Supplementary Figures 1-5 and additional references. (PDF 1131 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ferrier, K., Huppert, K. & Perron, J. Climatic control of bedrock river incision. Nature 496, 206–209 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing