Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Femtosecond switching of magnetism via strongly correlated spin–charge quantum excitations


The technological demand to push the gigahertz (109 hertz) switching speed limit of today’s magnetic memory and logic devices into the terahertz (1012 hertz) regime underlies the entire field of spin-electronics and integrated multi-functional devices. This challenge is met by all-optical magnetic switching based on coherent spin manipulation1. By analogy to femtosecond chemistry and photosynthetic dynamics2—in which photoproducts of chemical and biochemical reactions can be influenced by creating suitable superpositions of molecular states—femtosecond-laser-excited coherence between electronic states can switch magnetic order by ‘suddenly’ breaking the delicate balance between competing phases of correlated materials: for example, manganites exhibiting colossal magneto-resistance suitable for applications3,4. Here we show femtosecond (10−15 seconds) photo-induced switching from antiferromagnetic to ferromagnetic ordering in Pr0.7Ca0.3MnO3, by observing the establishment (within about 120 femtoseconds) of a huge temperature-dependent magnetization with photo-excitation threshold behaviour absent in the optical reflectivity. The development of ferromagnetic correlations during the femtosecond laser pulse reveals an initial quantum coherent regime of magnetism, distinguished from the picosecond (10−12 seconds) lattice-heating regime characterized by phase separation without threshold behaviour5,6. Our simulations reproduce the nonlinear femtosecond spin generation and underpin fast quantum spin-flip fluctuations correlated with coherent superpositions of electronic states to initiate local ferromagnetic correlations. These results merge two fields, femtosecond magnetism in metals and band insulators1,7,8,9, and non-equilibrium phase transitions of strongly correlated electrons10,11,12,13,14,15,16,17, in which local interactions exceeding the kinetic energy produce a complex balance of competing orders.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: A quantum many-body scheme for femtosecond switching of magnetism and ultrafast photo-induced spin dynamics in Pr0.7Ca0.3MnO3.
Figure 2: A three-dimensional view demonstrating the distinct femtosecond spin and charge dynamics as well as photo-excitation threshold behaviour.
Figure 3: Evidence for genuine femtosecond switching of magnetic ordering and its sensitive temperature dependence.
Figure 4: Interchain femtosecond quantum spin-flip fluctuations establish ferromagnetic correlations during the coherent laser photo-excitation.

Similar content being viewed by others


  1. Bigot, J. Y., Vomir, M. & Beaurepaire, E. Coherent ultrafast magnetism induced by femtosecond laser pulses. Nature Phys. 5, 515–520 (2009)

    Article  ADS  CAS  Google Scholar 

  2. Brumer, P. & Shapiro, M. Controlling chemical reactions in the quantum regime. Phys. Today 64, 11 (2011)

    Article  ADS  Google Scholar 

  3. Dagotto, E., Hotta, T. & Moreo, A. Colossal magnetoresistant materials: the key role of phase separation. Phys. Rep. 344, 1–153 (2001)

    Article  ADS  CAS  Google Scholar 

  4. Tokura, Y. & Nagaosa, N. Orbital physics in transition-metal oxides. Science 288, 462–468 (2000)

    Article  ADS  CAS  Google Scholar 

  5. McGill, S. A. et al. Optical evidence for transient photoinduced magnetization in La0. 7Ca0. 3MnO3 . Phys. Rev. B 71, 075117 (2005)

    Article  ADS  Google Scholar 

  6. Mertelj, T., Mamin, R., Yusupov, R. & Mihailovic, D. Ultrafast phase separation dynamics in La0. 875Sr0. 125MnO3 single crystals. Phys. Rev. B 83, 113103 (2011)

    Article  ADS  Google Scholar 

  7. Kirilyuk, A. V. et al. Ultrafast optical manipulation of magnetic order. Rev. Mod. Phys. 82, 2731–2784 (2010)

    Article  ADS  Google Scholar 

  8. Boeglin, C. et al. Distinguishing the ultrafast dynamics of spin and orbital moments in solids. Nature 465, 458–461 (2010)

    Article  ADS  CAS  Google Scholar 

  9. Kimel, A. V. et al. Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses. Nature 435, 655–657 (2005)

    Article  ADS  CAS  Google Scholar 

  10. Liu, M. et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 487, 345–348 (2012)

    Article  ADS  CAS  Google Scholar 

  11. Fiebig, M. et al. Sub-picosecond photo-induced melting of a charge-ordered state in a perovskite manganite. Appl. Phys. B 71, 211–215 (2000)

    Article  ADS  CAS  Google Scholar 

  12. Schmitt, F. et al. Transient electronic structure and melting of a charge density wave in TbTe3 . Science 321, 1649–1652 (2008)

    Article  ADS  CAS  Google Scholar 

  13. Fausti, D. et al. Light-induced superconductivity in a stripe-ordered cuprate. Science 331, 189–191 (2011)

    Article  ADS  CAS  Google Scholar 

  14. Kim, K. W. et al. Ultrafast transient generation of spin-density-wave order in the normal state of BaFe2As2 driven by coherent lattice vibrations. Nature Mater. 11, 497–501 (2012)

    Article  ADS  CAS  Google Scholar 

  15. Gedik, N., Yang, D., Logvenov, G., Bozovic, I. & Zewail, A. H. Nonequilibrium phase transitions in cuprates observed by ultrafast electron crystallography. Science 316, 425–429 (2007)

    Article  ADS  CAS  Google Scholar 

  16. Rini, M. et al. Control of the electronic phase of a manganite by mode-selective vibrational excitation. Nature 449, 72–74 (2007)

    Article  ADS  CAS  Google Scholar 

  17. Ichikawa, H. et al. Transient photoinduced hidden phase in a manganite. Nature Mater. 10, 101–105 (2011)

    Article  ADS  CAS  Google Scholar 

  18. Zhang, G. P. et al. Paradigm of the time-resolved magneto-optical Kerr effect for femtosecond magnetism. Nature Phys. 5, 499–502 (2009)

    Article  ADS  CAS  Google Scholar 

  19. Kapetanakis, M. D., Perakis, I. E., Wickey, K. J., Piermarocchi, C. & Wang, J. Femtosecond coherent control of spins in (Ga,Mn)As ferromagnetic semiconductors using light. Phys. Rev. Lett. 103, 047404 (2009)

    Article  ADS  CAS  Google Scholar 

  20. Wang, J. et al. Memory effects in photoinduced femtosecond magnetization rotation in ferromagnetic GaMnAs. Appl. Phys. Lett. 94, 021101 (2009)

    Article  ADS  Google Scholar 

  21. Kapetanakis, M. D., Lingos, P. C., Piermarocchi, C., Wang, J. & Perakis, I. E. All-optical four-state magnetization reversal in (Ga,Mn)As ferromagnetic semiconductors. Appl. Phys. Lett. 99, 091111 (2011)

    Article  ADS  Google Scholar 

  22. Matsubara, M. et al. Ultrafast photoinduced insulator-ferromagnet transition in the perovskite manganite Gd0. 55Sr0. 45MnO3 . Phys. Rev. Lett. 99, 207401 (2007)

    Article  ADS  CAS  Google Scholar 

  23. Ehrke, H. et al. Photoinduced melting of antiferromagnetic order in La0. 5Sr1. 5MnO4 measured using ultrafast resonant soft X-ray diffraction. Phys. Rev. Lett. 106, 217401 (2011)

    Article  ADS  CAS  Google Scholar 

  24. Miyasaka, K. et al. Ultrafast photoinduced magnetic moments in a charge-orbital-ordered antiferromagnetic Nd0. 5Sr0. 5MnO3 thin film. Phys. Rev. B 74, 012401 (2006)

    Article  ADS  Google Scholar 

  25. Wang, J. et al. Ultrafast enhancement of ferromagnetism via photoexcited holes in GaMnAs. Phys. Rev. Lett. 98, 217401 (2007)

    Article  ADS  CAS  Google Scholar 

  26. Kagan, M. Y., Khomskii, D. I. & Mostovoy, M. V. Double-exchange model: phase separation versus canted spins. Eur. Phys. J. B 12, 217–223 (1999)

    Article  ADS  CAS  Google Scholar 

  27. Cépas, O., Krishnamurthy, H. R. & Ramakrishnan, T. V. Instabilities and insulator-metal transitions in half-doped manganites induced by magnetic-field and doping. Phys. Rev. B 73, 035218 (2006)

    Article  ADS  Google Scholar 

  28. Yamaguchi, S., Okimoto, Y., Ishibashi, K. & Tokura, Y. Magneto-optical Kerr effects in perovskite-type transition-metal oxides: La1−xSrxMnO3 and La1−xSrxCoO3 . Phys. Rev. B 58, 6862–6870 (1998)

    Article  ADS  CAS  Google Scholar 

  29. Axt, V. M. & Mukamel, S. Nonlinear optics of semiconductor and molecular nanostructures; a common perspective. Rev. Mod. Phys. 70, 145–174 (1998)

    Article  ADS  CAS  Google Scholar 

  30. Karadimitriou, M. E., Kavousanaki, E. G., Dani, K. M., Fromer, N. A. & Perakis, I. E. Strong electronic correlation effects in coherent multidimensional nonlinear optical spectroscopy. J. Phys. Chem. B 115, 5634–5647 (2011)

    Article  CAS  Google Scholar 

Download references


This work was supported by the National Science Foundation (contract no. DMR-1055352). Material synthesis at the Ames Laboratory was supported by the US Department of Energy-Basic Energy Sciences (contract no. DE-AC02-7CH11358). L.M. acknowledges FP7-REGPOT-2008-1, Project BIOSOLENUTI no. 229927 for financial support. L.M. and I.E.P. were partially supported by the EU Social Fund and National resources through the THALES program NANOPHOS.

Author information

Authors and Affiliations



T.L., A.P. and J.W. performed the experimental measurements, collected the data and analysed the results. L.M. and I.E.P. developed the theory and performed the time-dependent and band-structure calculations. J.Y. and T.A.L. grew the samples and characterized the single crystals. J.W. and I.E.P. designed the experiment and wrote the paper, with help from all authors.

Corresponding authors

Correspondence to Ilias E. Perakis or Jigang Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text, Supplementary Figures 1-3 and Supplementary References. (PDF 549 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Li, T., Patz, A., Mouchliadis, L. et al. Femtosecond switching of magnetism via strongly correlated spin–charge quantum excitations. Nature 496, 69–73 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing