Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Electrical image of passive mantle upwelling beneath the northern East Pacific Rise


Melt generated by mantle upwelling is fundamental to the production of new oceanic crust at mid-ocean ridges, yet the forces controlling this process are debated1,2. Passive-flow models predict symmetric upwelling due to viscous drag from the diverging tectonic plates, but have been challenged by geophysical observations of asymmetric upwelling3,4,5 that suggest anomalous mantle pressure and temperature gradients2,6,7, and by observations of concentrated upwelling centres8 consistent with active models where buoyancy forces give rise to focused convective flow2. Here we use sea-floor magnetotelluric soundings at the fast-spreading northern East Pacific Rise to image mantle electrical structure to a depth of about 160 kilometres. Our data reveal a symmetric, high-conductivity region at depths of 20–90 kilometres that is consistent with partial melting of passively upwelling mantle9,10,11. The triangular region of conductive partial melt matches passive-flow predictions, suggesting that melt focusing to the ridge occurs in the porous melting region rather than along the shallower base of the thermal lithosphere. A deeper conductor observed east of the ridge at a depth of more than 100 kilometres is explained by asymmetric upwelling due to viscous coupling across two nearby transform faults. Significant electrical anisotropy occurs only in the shallowest mantle east of the ridge axis, where high vertical conductivity at depths of 10–20 kilometres indicates localized porous conduits. This suggests that a coincident seismic-velocity anomaly12 is evidence of shallow magma transport channels13,14 rather than deeper off-axis upwelling. We interpret the mantle electrical structure as evidence that plate-driven passive upwelling dominates this ridge segment, with dynamic forces being negligible.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Location of the magnetotelluric survey across the fast spreading East Pacific Rise.
Figure 2: Magnetotelluric resistivity image of mantle upwelling beneath the East Pacific Rise.
Figure 3: Three-dimensional passive-flow simulation of the EPR kinematics, including ridge migration, sea-floor spreading and the Clipperton and Siqueiros transform offsets.


  1. 1

    Forsyth, D. W. et al. Imaging the deep seismic structure beneath a mid-ocean ridge; the MELT experiment. Science 280, 1221–1224 (1998)

    ADS  PubMed  Article  Google Scholar 

  2. 2

    Katz, R. F. Porosity-driven convection and asymmetry beneath mid-ocean ridges. Geochem. Geophys. Geosyst. 11, Q0AC07 (2010)

    Article  Google Scholar 

  3. 3

    Hammond, W. C. & Toomey, D. R. Seismic velocity anisotropy and heterogeneity beneath the Mantle Electromagnetic and Tomography Experiment (MELT) region of the East Pacific Rise from analysis of P and S body waves. J. Geophys. Res.. 108, 2176, (2003)

    ADS  Article  Google Scholar 

  4. 4

    Dunn, R. A. & Forsyth, D. W. Imaging the transition between the region of mantle melt generation and the crustal magma chamber beneath the southern East Pacific Rise with short-period Love waves. J. Geophys. Res.. 108, 2352, (2003)

    ADS  Article  Google Scholar 

  5. 5

    Baba, K., Chave, A. D., Evans, R. L., Hirth, G. & Mackie, R. L. Mantle dynamics beneath the East Pacific Rise at 17°S: insights from the Mantle Electromagnetic and Tomography (MELT) experiment. J. Geophys. Res.. 111, B02101, (2006)

    ADS  Google Scholar 

  6. 6

    Conder, J. A., Forsyth, D. W. & Parmentier, E. M. Asthenospheric flow and asymmetry of the East Pacific Rise, MELT area. J. Geophys. Res.. 107, 2344, (2002)

    ADS  Article  Google Scholar 

  7. 7

    Toomey, D. R. et al. Asymmetric mantle dynamics in the MELT region of the East Pacific Rise. Earth Planet. Sci. Lett. 200, 287–295 (2002)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Wang, Y., Forsyth, D. W. & Savage, B. Convective upwelling in the mantle beneath the Gulf of California. Nature 462, 499–501 (2009)

    ADS  CAS  PubMed  Article  Google Scholar 

  9. 9

    Hirschmann, M. M., Tenner, T., Aubaud, C. & Withers, A. C. Dehydration melting of nominally anhydrous mantle: the primacy of partitioning. Phys. Earth Planet. Inter. 176, 54–68 (2009)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Ni, H., Keppler, H. & Behrens, H. Electrical conductivity of hydrous basaltic melts: implications for partial melting in the upper mantle. Contrib. Mineral. Petrol. 162, 637–650 (2011)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Yoshino, T., McIsaac, E., Laumonier, M. & Katsura, T. Electrical conductivity of partial molten carbonate peridotite. Phys. Earth Planet. Inter. 194–195, 1–9 (2012)

    ADS  Article  Google Scholar 

  12. 12

    Toomey, D. R., Jousselin, D., Dunn, R. A., Wilcock, W. S. D. & Detrick, R. S. Skew of mantle upwelling beneath the East Pacific Rise governs segmentation. Nature 446, 409–414 (2007)

    ADS  CAS  PubMed  Article  Google Scholar 

  13. 13

    Katz, R. F. & Weatherley, S. M. Consequences of mantle heterogeneity for melt extraction at mid-ocean ridges. Earth Planet. Sci Lett. 335–336, 226–237 (2012)

    ADS  Article  Google Scholar 

  14. 14

    Aharonov, E., Whitehead, J. A., Kelemen, P. B. & Spiegelman, M. Channeling instability of upwelling melt in the mantle. J. Geophys. Res. 100 (B10). 20433–20450 (1995)

    ADS  Article  Google Scholar 

  15. 15

    Key, K. & Constable, S. Broadband marine MT exploration of the East Pacific Rise at 9°50'N. Geophys. Res. Lett.. 29, 2054, (2002)

    ADS  Article  Google Scholar 

  16. 16

    Gripp, A. E. & Gordon, R. G. Young tracks of hotspots and current plate velocities. Geophys. J. Int. 150, 321–361 (2002)

    ADS  Article  Google Scholar 

  17. 17

    Haymon, R. M. et al. Volcanic eruption of the mid-ocean ridge along the East Pacific Rise crest at 9°45–52'N: direct submersible observations of seafloor phenomena associated with an eruption event in April 1991. Earth Planet. Sci. Lett. 119, 85–101 (1993)

    ADS  Article  Google Scholar 

  18. 18

    Baker, E. T. et al. Hydrothermal plumes along the East Pacific Rise, 8°40′ to 11°50′N: plume distribution and relationship to the apparent magmatic budget. Earth Planet. Sci. Lett. 128, 1–17 (1994)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Kent, G. M., Harding, A. J. & Orcutt, J. A. Distribution of magma beneath the East Pacific Rise between the Clipperton Transform and the 9°17′N Deval from forward modeling of common depth point data. J. Geophys. Res. B 98, 13945–13969 (1993)

    ADS  Article  Google Scholar 

  20. 20

    Tolstoy, M. et al. A seafloor spreading event captured by seismometers. Science 314, 1920–1922 (2006)

    ADS  CAS  PubMed  Article  Google Scholar 

  21. 21

    Danyushevsky, L. V., Eggins, S. M., Falloon, T. J. & Christie, D. M. H2O abundance in depleted to moderately enriched mid-ocean ridge magmas; part I: incompatible behaviour, implications for mantle storage, and origin of regional variations. J. Petrol. 41, 1329–1364 (2000)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Saal, A. E., Hauri, E. H., Langmuir, C. H. & Perfit, M. R. Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle. Nature 419, 451–455 (2002)

    ADS  CAS  PubMed  Article  Google Scholar 

  23. 23

    Hirose, K. Partial melt compositions of carbonated peridotite at 3 GPa and role of CO2 in alkali-basalt magma generation. Geophys. Res. Lett. 24, 2837–2840 (1997)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Wendlandt, R. F. & Mysen, B. O. Melting phase relations of natural peridotite + CO2 as a function of degree of partial melting at 15 and 30 kbar. Am. Mineral. 65, 37–44 (1980)

    CAS  Google Scholar 

  25. 25

    Dasgupta, R., Hirschmann, M. M. & Smith, N. D. Water follows carbon: CO2 incites deep silicate melting and dehydration beneath mid-ocean ridges. Geology 35, 135–138 (2007)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Minarik, W. G. Complications to carbonate melt mobility due to the presence of an immiscible silicate melt. J. Petrol. 39, 1965–1973 (1998)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Constable, S. SEO3: A new model of olivine electrical conductivity. Geophys. J. Int. 166, 435–437 (2006)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Egbert, G. D. Robust multiple-station magnetotelluric data processing. Geophys. J. Int. 130, 475–496 (1997)

    ADS  Article  Google Scholar 

  29. 29

    Key, K. & Ovall, J. A parallel goal-oriented adaptive finite element method for 2.5-D electromagnetic modelling. Geophys. J. Int. 186, 137–154 (2011)

    ADS  Article  Google Scholar 

  30. 30

    Constable, S. C., Parker, R. L. & Constable, C. G. Occam’s inversion — a practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics 52, 289–300 (1987)

    ADS  Article  Google Scholar 

  31. 31

    Berdichevsky, M. & Dmitriev, V. I. Models and Methods of Magnetotellurics (Springer, 2008)

    MATH  Book  Google Scholar 

  32. 32

    Wannamaker, P. E., Hohmann, G. W. & Ward, S. H. Magnetotelluric responses of three-dimensional bodies in layered earths. Geophysics 49, 1517–1533 (1984)

    ADS  Article  Google Scholar 

  33. 33

    Zhong, S., Zuber, M. T., Moresi, L. & Gurnis, M. Role of temperature-dependent viscosity and surface plates in spherical shell models of mantle convection. J. Geophys. Res. 105, 11063–11082 (2000)

    ADS  Article  Google Scholar 

Download references


We thank the captain and crew of R/V Roger Revelle, members of the scientific party (J. Behrens, G. Boran, G. Heinson, J. King, A. Massarweh, L. Terzi and C. Weiss), and the technical team (C. Armerding, P. Cheng, C. Berger, G. Englehorn, G. Howe, K. Callaway and J. Lemire). We thank D. Myer for assistance with the data processing and R. Katz for reviewing the manuscript. This work was funded by US NSF award OCE-0241597 and the Seafloor Electromagnetic Methods Consortium at Scripps Institution of Oceanography.

Author information




K.K. and S.C. collected and analysed the field data. A.P. and K.K. performed the melt calculations. L.L. carried out the mantle flow simulations. K.K. wrote most of the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Kerry Key.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-8. (PDF 5517 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Key, K., Constable, S., Liu, L. et al. Electrical image of passive mantle upwelling beneath the northern East Pacific Rise. Nature 495, 499–502 (2013).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing