Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Coherent state transfer between itinerant microwave fields and a mechanical oscillator


Macroscopic mechanical oscillators have been coaxed into a regime of quantum behaviour by direct refrigeration1 or a combination of refrigeration and laser-like cooling2,3. This result supports the idea that mechanical oscillators may perform useful functions in the processing of quantum information with superconducting circuits4,5,6,7, either by serving as a quantum memory for the ephemeral state of a microwave field or by providing a quantum interface between otherwise incompatible systems8,9,10,11,12,13,14. As yet, the transfer of an itinerant state or a propagating mode of a microwave field to and from a storage medium has not been demonstrated, owing to the inability to turn on and off the interaction between the microwave field and the medium sufficiently quickly. Here we demonstrate that the state of an itinerant microwave field can be coherently transferred into, stored in and retrieved from a mechanical oscillator with amplitudes at the single-quantum level. Crucially, the time to capture and to retrieve the microwave state is shorter than the quantum state lifetime of the mechanical oscillator. In this quantum regime, the mechanical oscillator can both store quantum information and enable its transfer between otherwise incompatible systems.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Schematic description of the experiment.
Figure 2: Coherent state transfer.
Figure 3: A mechanical oscillator as a phase-coherent memory.


  1. 1

    O’Connell, A. D. et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010)

    ADS  Article  Google Scholar 

  2. 2

    Teufel, J. D. et al. Sideband cooling of micromechanical motion to the quantum ground state. Nature 475, 359–363 (2011)

    CAS  ADS  Article  Google Scholar 

  3. 3

    Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011)

    CAS  ADS  Article  Google Scholar 

  4. 4

    Hertzberg, J. B. et al. Back-action-evading measurements of nanomechanical motion. Nature Phys. 6, 213–217 (2010)

    CAS  ADS  Article  Google Scholar 

  5. 5

    Sillanpää, M. A., Sarkar, J., Sulkko, J., Muhonen, J. & Hakonen, P. J. Accessing nanomechanical resonators via a fast microwave circuit. Appl. Phys. Lett. 95, 011909 (2009)

    ADS  Article  Google Scholar 

  6. 6

    LaHaye, M. D., Suh, J., Echternach, P. M., Schwab, K. C. & Roukes, M. L. Nanomechanical measurements of a superconducting qubit. Nature 459, 960–964 (2009)

    CAS  ADS  Article  Google Scholar 

  7. 7

    Regal, C. A., Teufel, J. D. & Lehnert, K. W. Measuring nanomechanical motion with a microwave cavity interferometer. Nature Phys. 4, 555–560 (2008)

    CAS  Article  Google Scholar 

  8. 8

    Wang, Y. D. & Clerk, A. A. Using interference for high fidelity quantum state transfer in optomechanics. Phys. Rev. Lett. 108, 153603 (2012)

    ADS  Article  Google Scholar 

  9. 9

    Regal, C. A. & Lehnert, K. W. From cavity electromechanics to cavity optomechanics. J. Phys. Conf. Ser. 264, 012025 (2011)

    Article  Google Scholar 

  10. 10

    McGee, S. A., Meiser D, Regal, C. A., Lehnert, K. W. & Holland, M. J. Mechanical resonators for storage and transfer of electrical and optical quantum states. Phys. Rev. A (submitted)

  11. 11

    Tian, L. Adiabatic state conversion and pulse transmission in optomechanical systems. Phys. Rev. Lett. 108, 153604 (2012)

    ADS  Article  Google Scholar 

  12. 12

    Safavi-Naeini, A. H. & Painter, O. Proposal for an optomechanical traveling wave phonon-photon translator. N. J. Phys. 13, 013017 (2011)

    Article  Google Scholar 

  13. 13

    Hofer, S. G., Wieczorek, W., Aspelmeyer, M. & Hammerer, K. Quantum entanglement and teleportation in pulsed cavity optomechanics. Phys. Rev. A 84, 052327 (2011)

    ADS  Article  Google Scholar 

  14. 14

    Zhang, J., Peng, K. & Braunstein, S. L. Quantum-state transfer from light to macroscopic oscillators. Phys. Rev. A 68, 013808 (2003)

    ADS  Article  Google Scholar 

  15. 15

    Houck, A. A. et al. Generating single microwave photons in a circuit. Nature 449, 328–331 (2007)

    CAS  ADS  Article  Google Scholar 

  16. 16

    Mallet, F. et al. Quantum state tomography of an itinerant squeezed microwave field. Phys. Rev. Lett. 106, 220502 (2011)

    CAS  ADS  Article  Google Scholar 

  17. 17

    Eichler, C. et al. Experimental state tomography of itinerant single microwave photons. Phys. Rev. Lett. 106, 259903 (2011)

    ADS  Article  Google Scholar 

  18. 18

    Cicak, K. et al. Low-loss superconducting resonant circuits using vacuum-gap-based microwave components. Appl. Phys. Lett. 96, 093502 (2010)

    ADS  Article  Google Scholar 

  19. 19

    Gao, J. S. et al. Experimental evidence for a surface distribution of two-level systems in superconducting lithographed microwave resonators. Appl. Phys. Lett. 92, 152505 (2008)

    ADS  Article  Google Scholar 

  20. 20

    Fiore, V. et al. Storing optical information as a mechanical excitation in a silica optomechanical resonator. Phys. Rev. Lett. 107, 133601 (2011)

    ADS  Article  Google Scholar 

  21. 21

    Verhagen, E., Deleglise, S., Weis, S., Schliesser, A. & Kippenberg, T. J. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature 482, 63–67 (2012)

    CAS  ADS  Article  Google Scholar 

  22. 22

    Gröblacher, S., Hammerer, K., Vanner, M. R. & Aspelmeyer, M. Observation of strong coupling between a micromechanical resonator and an optical cavity field. Nature 460, 724–727 (2009)

    ADS  Article  Google Scholar 

  23. 23

    Teufel, J. D. et al. Circuit cavity electromechanics in the strong-coupling regime. Nature 471, 204–208 (2011)

    CAS  ADS  Article  Google Scholar 

  24. 24

    Teufel, J. D., Harlow, J. W., Regal, C. A. & Lehnert, K. W. Dynamical backaction of microwave fields on a nanomechanical oscillator. Phys. Rev. Lett. 101, 197203 (2008)

    CAS  ADS  Article  Google Scholar 

  25. 25

    Marquardt, F., Chen, J. P., Clerk, A. A. & Girvin, S. M. Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. 99, 093902 (2007)

    ADS  Article  Google Scholar 

  26. 26

    Wilson-Rae, I., Nooshi, N., Zwerger, W. & Kippenberg, T. J. Theory of ground state cooling of a mechanical oscillator using dynamical backaction. Phys. Rev. Lett. 99, 093901 (2007)

    CAS  ADS  Article  Google Scholar 

  27. 27

    Novikova, I. et al. Optimal control of light pulse storage and retrieval. Phys. Rev. Lett. 98, 243602 (2007)

    ADS  Article  Google Scholar 

  28. 28

    Reim, K. F. et al. Single-photon-level quantum memory at room temperature. Phys. Rev. Lett. 107, 053603 (2011)

    CAS  ADS  Article  Google Scholar 

  29. 29

    Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997)

    CAS  ADS  Article  Google Scholar 

  30. 30

    Boozer, A. D., Boca, A., Miller, R., Northup, T. E. & Kimble, H. J. Reversible state transfer between light and a single trapped atom. Phys. Rev. Lett. 98, 193601 (2007)

    CAS  ADS  Article  Google Scholar 

Download references


This work was supported primarily by the DARPA QuASAR programme, with additional support from the US NSF Physics Frontier Center and NIST. We would like to thank J. Kerckhoff, M. Holland, C. Regal, J. Thompson and R. Andrews for discussions.

Author information




T.A.P. and K.W.L. designed the experiment, analysed the results and wrote the manuscript. T.A.P. performed the measurements. J.D.T. and R.W.S. designed and fabricated the device. J.W.H. provided experimental support. All authors commented on the results and manuscript.

Corresponding author

Correspondence to K. W. Lehnert.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, Supplementary Figures 1-4 and Supplementary References. (PDF 220 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Palomaki, T., Harlow, J., Teufel, J. et al. Coherent state transfer between itinerant microwave fields and a mechanical oscillator. Nature 495, 210–214 (2013).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing