Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Water and hydrogen are immiscible in Earth’s mantle

Subjects

Abstract

In the deep, chemically reducing parts of Earth’s mantle1, hydrous fluids contain significant amounts of molecular hydrogen (H2). Thermodynamic models of fluids in Earth’s mantle so far have always assumed that molecular hydrogen and water are completely miscible. Here we show experimental evidence that water and hydrogen can coexist as two separate, immiscible phases. Immiscibility between water and hydrogen may be the cause of the formation of enigmatic, ultra-reducing domains in the mantle that contain moissanite (SiC) and other phases indicative of extremely reducing conditions2,3. Moreover, the immiscibility between water and hydrogen may provide a mechanism for the rapid oxidation of Earth’s upper mantle immediately following core formation4.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Synthetic fluid inclusions in olivine formed at 1,000 °C and 2.6 GPa at Fe–FeO buffer conditions.
Figure 2: Synthetic fluid inclusions in olivine formed at 950 °C and 2.3 GPa at Fe–FeO buffer conditions.
Figure 3: Experimental data on the location of the critical curve in the H 2 –H 2 O system.

References

  1. Frost, D. J. & McCammon, C. A. The redox state of Earth’s mantle. Annu. Rev. Earth Planet. Sci. 36, 389–420 (2008)

    ADS  CAS  Article  Google Scholar 

  2. Shiryaev, A. A., Griffin, W. L. & Stoyanov, E. Moissanite (SiC) from kimberlites: polytypes, trace elements, inclusions and speculations on origin. Lithos 122, 152–164 (2011)

    ADS  CAS  Article  Google Scholar 

  3. Trumbull, R. B. et al. The carbon isotope composition of natural SiC (moissanite) from the Earth’s mantle: new discoveries from ophiolites. Lithos 113, 612–620 (2009)

    ADS  CAS  Article  Google Scholar 

  4. Trail, D., Watson, E. B. & Tailby, N. D. The oxidation state of Hadean magmas and implications for early Earth’s atmosphere. Nature 480, 79–82 (2011)

    ADS  CAS  Article  Google Scholar 

  5. Holland, H. D. Volcanic gases, black smokers, and the Great Oxidation Event. Geochim. Cosmochim. Acta 66, 3811–3826 (2002)

    ADS  CAS  Article  Google Scholar 

  6. Gaillard, F., Scaillet, B. & Arndt, N. T. Atmospheric oxygenation caused by a change in volcanic degassing pressure. Nature 478, 229–232 (2011)

    ADS  CAS  Article  Google Scholar 

  7. Wood, B. J., Bryndzia, L. T. & Johnson, K. E. Mantle oxidation-state and its relationship to tectonic environment and fluid speciation. Science 248, 337–345 (1990)

    ADS  CAS  Article  Google Scholar 

  8. Kelley, K. A. & Cottrell, E. Water and the oxidation state of subduction zone magmas. Science 325, 605–607 (2009)

    ADS  CAS  Article  Google Scholar 

  9. Ulmer, G. C. et al. The redox stability of moissanite (SiC) compared with metal – metal oxide buffers at 1773 K and at pressures up to 90 kbar. Neues Jb. Mineral. Abh. 172, 297–307 (1998)

    Google Scholar 

  10. Mathez, E. A., Fogel, R. A., Hutcheon, I. D. & Marshintsev, V. K. Carbon isotopic composition and origin of SiC from kimberlites of Yakutia, Russia. Geochim. Cosmochim. Acta 59, 781–791 (1995)

    ADS  CAS  Article  Google Scholar 

  11. Seward, T. M. & Franck, E. U. The system hydrogen-water up to 440 °C and 2500 bar pressure. Ber. Bunsenges. Phys. Chem 85, 2–7 (1981)

    CAS  Article  Google Scholar 

  12. Sterner, S. M. & Bodnar, R. J. Synthetic fluid inclusions in natural quartz. 1. Compositional types synthesized and applications to experimental geochemistry. Geochim. Cosmochim. Acta 48, 2659–2668 (1984)

    ADS  CAS  Article  Google Scholar 

  13. Walther, J. V. & Orville, P. M. The extraction-quench technique for determination of the thermodynamic properties of solute complexes: application to quartz solubility in fluid mixtures. Am. Mineral. 68, 731–741 (1983)

    CAS  Google Scholar 

  14. Jaupart, C. & Mareschal, J. C. The thermal structure and thickness of continental roots. Lithos 48, 93–114 (1999)

    ADS  CAS  Article  Google Scholar 

  15. Rudnick, R. L. & Nyblade, A. A. in Mantle Petrology: Field Observations and High-Pressure Experimentation: A Tribute to Francis R. (Joe) Boyd (eds Fei, Y.-W., Bertka, C. M. & Mysen, B. O. ) 3–12 (Spec. Publ. 6, Geochemical Soc., 1999)

    Google Scholar 

  16. Kawamoto, T. Hydrous phases and water transport in the subducting slab. Rev. Mineral. Geochem. 62, 273–289 (2006)

    CAS  Article  Google Scholar 

  17. Rupke, L. H., Morgan, J. P., Hort, M. & Connolly, J. A. D. Serpentine and the subduction zone water cycle. Earth Planet. Sci. Lett. 223, 17–34 (2004)

    ADS  Article  Google Scholar 

  18. Sillitoe, R. H. Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-Pacific region. Aust. J. Earth Sci. 44, 373–388 (1997)

    ADS  CAS  Article  Google Scholar 

  19. Dasgupta, R. & Hirschmann, M. M. The deep carbon cycle and melting in Earth’s interior. Earth Planet. Sci. Lett. 298, 1–13 (2010)

    ADS  CAS  Article  Google Scholar 

  20. Morizet, Y., Paris, M., Gaillard, F. & Scaillet, B. C-O-H fluid solubility in haplobasalt under reducing conditions: an experimental study. Chem. Geol. 279, 1–16 (2010)

    ADS  CAS  Article  Google Scholar 

  21. Andersen, T. & Neumann, E. R. Fluid inclusions in mantle xenoliths. Lithos 55, 301–320 (2001)

    ADS  CAS  Article  Google Scholar 

  22. Canil, D. Vanadium partitioning and the oxidation state of Archaean komatiite magmas. Nature 389, 842–845 (1997)

    ADS  CAS  Article  Google Scholar 

  23. Berry, A. J., Danyushevsky, L. V., O’Neill, H. S. C., Newville, M. & Sutton, S. R. Oxidation state of iron in komatiitic melt inclusions indicates hot Archaean mantle. Nature 455, 960–963 (2008)

    ADS  CAS  Article  Google Scholar 

  24. Li, Z. X. A. & Lee, C. T. A. The constancy of upper mantle fO2 through time inferred from V/Sc ratios in basalts. Earth Planet. Sci. Lett. 228, 483–493 (2004)

    ADS  CAS  Article  Google Scholar 

  25. Williams, H. M., Wood, B. J., Wade, J., Frost, D. J. & Tuff, J. Isotopic evidence for internal oxidation of the Earth’s mantle during accretion. Earth Planet. Sci. Lett. 321, 54–63 (2012)

    ADS  Article  Google Scholar 

  26. Marty, B. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313, 56–66 (2012)

    ADS  Article  Google Scholar 

  27. Morbidelli, A. et al. Source regions and timescales for the delivery of water to the Earth. Meteorit. Planet. Sci. 35, 1309–1320 (2002)

    ADS  Article  Google Scholar 

  28. Tian, F., Toon, O. B., Pavlov, A. A. & De Sterck, H. A hydrogen-rich early Earth atmosphere. Science 308, 1014–1017 (2005)

    ADS  CAS  Article  Google Scholar 

  29. Audetat, A. & Bali, E. A new technique to seal volatile-rich samples into platinum capsules. Eur. J. Mineral. 22, 23–27 (2010)

    ADS  CAS  Article  Google Scholar 

  30. Mareschal, J. C. & Jaupart, C. in Archean Geodynamics and Environments (eds Benn, K., Mareschal, J. & Condie, K. C. ) 61–73 (Geophys. Monograph Ser. 164, Am. Geophys. Union, 2006)

    Book  Google Scholar 

Download references

Acknowledgements

We thank H. Schulze for help in sample preparation. This Letter has been improved by comments from D. Walker.

Author information

Authors and Affiliations

Authors

Contributions

E.B. carried out all experiments reported in this Letter. A.A. assisted in the design and interpretation of the experiments. H.K. helped in measuring the Raman spectra and in the geological application of the data. The authors wrote the manuscript together.

Corresponding author

Correspondence to Enikő Bali.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data showing the model calculation on percolation of hydrogen-rich fluids through the mantle; Supplementary Figures 1-4, which are photographs of run products for the demonstration of immiscibility and complete miscibility between H2 and H2O as observed in our experimental run products and additional references. (PDF 4830 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bali, E., Audétat, A. & Keppler, H. Water and hydrogen are immiscible in Earth’s mantle. Nature 495, 220–222 (2013). https://doi.org/10.1038/nature11908

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11908

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing