Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dynamics of a Snowball Earth ocean

Abstract

Geological evidence suggests that marine ice extended to the Equator at least twice during the Neoproterozoic era (about 750 to 635 million years ago)1,2, inspiring the Snowball Earth hypothesis that the Earth was globally ice-covered3,4. In a possible Snowball Earth climate, ocean circulation and mixing processes would have set the melting and freezing rates that determine ice thickness5,6, would have influenced the survival of photosynthetic life4,5,7,8,9, and may provide important constraints for the interpretation of geochemical and sedimentological observations4,10. Here we show that in a Snowball Earth, the ocean would have been well mixed and characterized by a dynamic circulation11, with vigorous equatorial meridional overturning circulation, zonal equatorial jets, a well developed eddy field, strong coastal upwelling and convective mixing. This is in contrast to the sluggish ocean often expected in a Snowball Earth scenario3 owing to the insulation of the ocean from atmospheric forcing by the thick ice cover. As a result of vigorous convective mixing, the ocean temperature, salinity and density were either uniform in the vertical direction or weakly stratified in a few locations. Our results are based on a model that couples ice flow and ocean circulation, and is driven by a weak geothermal heat flux under a global ice cover about a kilometre thick. Compared with the modern ocean, the Snowball Earth ocean had far larger vertical mixing rates, and comparable horizontal mixing by ocean eddies. The strong circulation and coastal upwelling resulted in melting rates near continents as much as ten times larger than previously estimated6,7. Although we cannot resolve the debate over the existence of global ice cover10,12,13, we discuss the implications for the nutrient supply of photosynthetic activity and for banded iron formations. Our insights and constraints on ocean dynamics may help resolve the Snowball Earth controversy when combined with future geochemical and geological observations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Results of a 2D (latitude and depth) ocean model coupled to a 1D (latitude only) ice flow model.
Figure 2: Results of a 3D high-resolution sector ocean model showing a rich time-dependent turbulent eddy field.
Figure 3: Results of the 3D ocean model coupled to a 2D (latitude and longitude) ice flow model, in the presence of reconstructed Neoproterozoic continental configuration.

Similar content being viewed by others

References

  1. Harland, W. B. in Problems in Palaeoclimatology (ed. Nairn, A. E. M.) 119–149 180–184 (John Wiley & Sons, 1964)

    Google Scholar 

  2. Evans, D. A. D. & Raub, T. D. in The Geological Record of Neoproterozoic Glaciations (eds Arnaud, E., Halverson, G. P. & Shields-Zhou, G.) Vol. 36, 93–112 (London, Geological Society of London, 2011)

    Google Scholar 

  3. Kirschvink, J. in The Proterozoic Biosphere: A Multidisciplinary Study (eds Schopf, J. & Klein, C.) 51–52 (Cambridge University Press, 1992)

    Google Scholar 

  4. Hoffman, P. & Schrag, D. The snowball Earth hypothesis: testing the limits of global change. Terra Nova 14, 129–155 (2002)

    Article  CAS  ADS  Google Scholar 

  5. McKay, C. Thickness of tropical ice and photosynthesis on a snowball Earth. Geophys. Res. Lett. 27, 2153–2156 (2000)

    Article  CAS  ADS  Google Scholar 

  6. Goodman, J. & Pierrehumbert, R. Glacial flow of floating marine ice in “Snowball Earth”. J. Geophys. Res. 108 10.1029/2002JC001471 (2003)

  7. Pollard, D. & Kasting, J. Snowball Earth: a thin-ice solution with flowing sea glaciers. J. Geophys. Res. 110 10.1029/2004JC002525 (2005)

  8. Corsetti, F., Olcott, A. & Bakermans, C. The biotic response to Neoproterozoic snowball Earth. Palaeogeogr. Palaeoclimatol. Palaeoecol. 232, 114–130 (2006)

    Article  Google Scholar 

  9. Campbell, A. J., Waddington, E. D. & Warren, S. G. Refugium for surface life on Snowball Earth in a nearly-enclosed sea? A first simple model for sea-glacier invasion. Geophys. Res. Lett. 38 10.1029/2011GL048846 (2011)

  10. Allen, P. A. & Etienne, J. L. Sedimentary challenge to Snowball Earth. Nature Geosci. 1, 817–825 (2008)

    Article  CAS  ADS  Google Scholar 

  11. Ferreira, D., Marshall, J. & Rose, B. Climate determinism revisited: multiple equilibria in a complex climate model. J. Clim. 24, 992–1012 (2011)

    Article  ADS  Google Scholar 

  12. Pierrehumbert, R. T., Abbot, D. S., Voigt, A. & Koll, D. Climate of the Neoproterozoic. Annu. Rev. Earth Planet. Sci. 39, 417–460 (2011)

    Article  CAS  ADS  Google Scholar 

  13. Yang, J., Peltier, W. R. & Hu, Y. The initiation of modern “Soft Snowball” and “Hard Snowball” climates in CCSM3. Part II: Climate dynamic feedbacks. J. Clim. 25, 2737–2754 (2012)

    Article  ADS  Google Scholar 

  14. Warren, S., Brandt, R., Grenfell, T. & McKay, C. Snowball Earth: ice thickness on the tropical ocean. J. Geophys. Res. 107 10.1029/2001JC001123 (2002)

  15. Tziperman, E. et al. Continental constriction and sea ice thickness in a Snowball-Earth scenario. J. Geophys. Res. 117 10.1029/2011JC007730 (2012)

    Article  Google Scholar 

  16. Pierrehumbert, R. Climate dynamics of a hard snowball Earth. J. Geophys. Res. 110 10.1029/2004JD005162 (2005)

  17. Le Hir, G., Donnadieu, Y., Krinner, G. & Ramstein, G. Toward the snowball earth deglaciation. Clim. Dyn. 35, 285–297 (2010)

    Article  Google Scholar 

  18. Donnadieu, Y., Goddéris, Y., Ramstein, G., Nédélec, A. & Meert, J. A snowball Earth climate triggered by continental break-up through changes in runoff. Nature 428, 303–306 (2004)

    Article  CAS  ADS  Google Scholar 

  19. Abbot, D. S. & Pierrehumbert, R. T. Mudball: surface dust and Snowball Earth deglaciation. J. Geophys. Res. 115 10.1029/2009JD012007 (2010)

  20. Poulsen, C., Pierrehumbert, R. T. & Jacobs, R. L. Impact of ocean dynamics on the simulation of the Neoproterozoic “snowball Earth”. Geophys. Res. Lett. 28, 1575–1578 (2001)

    Article  ADS  Google Scholar 

  21. Poulsen, C. & Jacob, R. Factors that inhibit snowball Earth simulation. Paleoceanography 19 10.1029/2004PA001056 (2004)

  22. Voigt, A., Abbot, D. S., Pierrehumbert, R. T. & Marotzke, J. Initiation of a Marinoan Snowball Earth in a state-of-the-art atmosphere-ocean general circulation model. Clim. Past 7, 249–263 (2011)

    Article  Google Scholar 

  23. Le Hir, G., Ramstein, G., Donnadieu, Y. & Pierrehumbert, R. T. Investigating plausible mechanisms to trigger a deglaciation from a hard snowball Earth. C. R. Geosci. 339, 274–287 (2007)

    Article  CAS  Google Scholar 

  24. Farrell, B. F. & Ioannou, P. J. Structural stability of turbulent jets. J. Atmos. Sci. 60, 2101–2118 (2003)

    Article  ADS  Google Scholar 

  25. Runnegar, B. Palaeoclimate: loophole for snowball Earth. Nature 405, 403–404 (2000)

    Article  CAS  Google Scholar 

  26. Bekker, A. et al. Iron formation: the sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes. Econ. Geol. 105, 467–508 (2010)

    Article  CAS  Google Scholar 

  27. Young, G. M. Proterozoic plate tectonics, glaciation and iron-formations. Sedim. Geol. 58, 127–144 (1988)

    Article  CAS  ADS  Google Scholar 

  28. Marshall, J., Adcroft, A., Hill, C., Perelman, L. & Heisey, C. A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res. 102, 5753–5766 (1997)

    Article  ADS  Google Scholar 

  29. Losch, M. Modeling ice shelf cavities in a z coordinate ocean general circulation model. J. Geophys. Res. 113 10.1029/2007JC004368 (2008)

  30. Li, Z. X. et al. Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambr. Res. 160, 179–210 (2008)

    Article  CAS  ADS  Google Scholar 

  31. Li, D. & Pierrehumbert, R. T. Sea glacier flow and dust transport on Snowball Earth. Geophys. Res. Lett. 38 10.1029/2011GL048991 (2011)

  32. Goodman, J. C. Through thick and thin: marine and meteoric ice in a “Snowball Earth” climate. Geophys. Res. Lett. 33 10.1029/2006GL026840 (2006)

  33. Pollard, D. & Kasting, J. F. Reply to comment by Stephen G. Warren and Richard E. Brandt on “Snowball Earth: A thin-ice solution with flowing sea glaciers”. J. Geophys. Res. 111 10.1029/2006JC003488 (2006)

  34. Morland, L. Unconfined ice-shelf flow. In Dynamics of the West Antarctic Ice Sheet (eds van der Veen, C. & Oerlemans, J.) 99–116 (D. Reidel, 1987)

    Book  Google Scholar 

  35. MacAyeal, D. EISMINT: Lessons in ice-sheet modeling. Technical Report http://geosci.uchicago.edu/pdfs/macayeal/lessons.pdf (University of Chicago, 1997)

  36. Gent, P. R. & McWilliams, J. C. Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr. 20, 150–155 (1990)

    Article  ADS  Google Scholar 

  37. Leith, C. E. Stochastic models of chaotic systems. Physica D 98, 481–491 (1996)

    Article  ADS  Google Scholar 

  38. Adcroft, A., Scott, J. R. & Marotzke, J. Impact of geothermal heating on the global ocean circulation. Geophys. Res. Lett. 28, 1735–1738 (2001)

    Article  ADS  Google Scholar 

  39. Pollack, H., Hurter, S. & Johnson, J. Heat flow from the Earth’s interior: analysis of the global data set. Rev. Geophys. 31, 267–280 (1993)

    Article  ADS  Google Scholar 

  40. Hellmer, H., Schodlok, M., Wenzel, M. & Schröter, J. On the influence of adequate Weddell Sea characteristics in a large-scale global ocean circulation model. Ocean Dyn. 55, 88–99 (2005)

    Article  ADS  Google Scholar 

  41. Thoma, M., Grosfeld, K. & Lange, M. The impact of the Eastern Weddell ice shelves on water masses in the Eastern Weddell Sea. J. Geophys. Res. 111, C12010 (2006)

    Article  ADS  Google Scholar 

  42. Campin, J., Marshall, J. & Ferreira, D. Sea ice–ocean coupling using a rescaled vertical coordinate z. Ocean Model. 24, 1–14 (2008)

    Article  ADS  Google Scholar 

  43. Knauth, L. Temperature and salinity history of the Precambrian ocean: implications for the course of microbial evolution. Palaeogeogr. Palaeoclimatol. Palaeoecol. 219, 53–69 (2005)

    Article  Google Scholar 

  44. Warren, J. Evaporites through time: tectonic, climatic and eustatic controls in marine and nonmarine deposits. Earth Sci. Rev. 98, 217–268 (2010)

    Article  CAS  ADS  Google Scholar 

  45. Evans, D. A. D. Proterozoic low orbital obliquity and axial-dipolar geomagnetic field from evaporite palaeolatitudes. Nature 444, 51–55 (2006)

    Article  CAS  ADS  Google Scholar 

  46. Donnadieu, Y., Fluteau, F., Ramstein, G., Ritz, C. & Besse, J. Is there a conflict between the Neoproterozoic glacial deposits and the snowball Earth interpretation: an improved understanding with numerical modeling. Earth Planet. Sci. Lett. 208, 101–112 (2003)

    Article  CAS  ADS  Google Scholar 

  47. Pollard, D. & Kasting, J. Climate-ice sheet simulations of Neoproterozoic glaciation before and after collapse to Snowball Earth. Geophys. Monogr. Ser. 146, 91–105 (2004)

    CAS  Google Scholar 

  48. Lythe, M. et al. Bedmap: a new ice thickness and subglacial topographic model of Antarctica. J. Geophys. Res. 106, 11335–11351 (2001)

    Article  ADS  Google Scholar 

  49. Hoffman, P. F. Strange bedfellows: glacial diamictite and cap carbonate from the Marinoan (635) glaciation in Namibia. Sedimentology 58, 57–119 (2011)

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

We thank B. Rose for comments. This work was supported by the NSF Climate Dynamics P2C2 programme, grant number ATM-0902844 (to E.T. and Y.A.). E.T. thanks the Weizmann Institute for its hospitality during parts of this work. Y.A. thanks the Harvard EPS department for a most pleasant and productive sabbatical visit.

Author information

Authors and Affiliations

Authors

Contributions

Y.A. and E.T. formulated the problem and performed the model runs and analysis, F.A.M. and D.P.S. contributed to the geological motivation and interpretation, M.L. and H.G. helped with the model set-up, and all authors contributed to the writing of the manuscript.

Corresponding authors

Correspondence to Yosef Ashkenazy or Eli Tziperman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-3. (PDF 329 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashkenazy, Y., Gildor, H., Losch, M. et al. Dynamics of a Snowball Earth ocean. Nature 495, 90–93 (2013). https://doi.org/10.1038/nature11894

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11894

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing