Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Biodiversity decreases disease through predictable changes in host community competence

Abstract

Accelerating rates of species extinctions and disease emergence underscore the importance of understanding how changes in biodiversity affect disease outcomes1,2,3. Over the past decade, a growing number of studies have reported negative correlations between host biodiversity and disease risk4,5,6,7,8, prompting suggestions that biodiversity conservation could promote human and wildlife health9,10. Yet the generality of the diversity–disease linkage remains conjectural11,12,13, in part because empirical evidence of a relationship between host competence (the ability to maintain and transmit infections) and the order in which communities assemble has proven elusive. Here we integrate high-resolution field data with multi-scale experiments to show that host diversity inhibits transmission of the virulent pathogen Ribeiroia ondatrae and reduces amphibian disease as a result of consistent linkages among species richness, host composition and community competence. Surveys of 345 wetlands indicated that community composition changed nonrandomly with species richness, such that highly competent hosts dominated in species-poor assemblages whereas more resistant species became progressively more common in diverse assemblages. As a result, amphibian species richness strongly moderated pathogen transmission and disease pathology among 24,215 examined hosts, with a 78.4% decline in realized transmission in richer assemblages. Laboratory and mesocosm manipulations revealed an approximately 50% decrease in pathogen transmission and host pathology across a realistic diversity gradient while controlling for host density, helping to establish mechanisms underlying the diversity–disease relationship and their consequences for host fitness. By revealing a consistent link between species richness and community competence, these findings highlight the influence of biodiversity on infection risk and emphasize the benefit of a community-based approach to understanding infectious diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Consistent linkages among species richness, community composition and the traits of individual amphibian host species across 345 sampled wetlands.
Figure 2: Influence of amphibian species richness on the capacity of communities to support parasite infection in naturally occurring wetlands.
Figure 3: Effects of parasite infection on amphibian malformations and of host richness on parasite transmission.
Figure 4: Experimental effects of host diversity on parasite transmission and host pathology.

Similar content being viewed by others

References

  1. Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012)

    CAS  PubMed  ADS  Google Scholar 

  2. Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–993 (2008)

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  3. Naeem, S., Duffy, J. E. & Zavaleta, E. The functions of biological diversity in an age of extinction. Science 336, 1401–1406 (2012)

    CAS  PubMed  ADS  Google Scholar 

  4. Clay, C. A., Lehmer, E. M., Jeor, S. S. & Dearing, M. D. Sin Nombre virus and rodent species diversity: a test of the dilution and amplification hypotheses. PLoS ONE 4, e6467 (2009)

    PubMed  PubMed Central  ADS  Google Scholar 

  5. Haas, S. E., Hooten, M. B., Rizzo, D. M. & Meentemeyer, R. K. Forest species diversity reduces disease risk in a generalist plant pathogen invasion. Ecol. Lett. 14, 1108–1116 (2011)

    PubMed  Google Scholar 

  6. LoGiudice, K., Ostfeld, R. S., Schmidt, K. A. & Keesing, F. The ecology of infectious disease: Effects of host diversity and community composition on Lyme disease risk. Proc. Natl Acad. Sci. USA 100, 567–571 (2003)

    CAS  PubMed  ADS  PubMed Central  Google Scholar 

  7. Allan, B. F. et al. Ecological correlates of risk and incidence of West Nile virus in the United States. Oecologia 158, 699–708 (2009)

    PubMed  ADS  Google Scholar 

  8. Ezenwa, V. O., Godsey, M. S., King, R. J. & Guptill, S. C. Avian diversity and West Nile virus: testing associations between biodiversity and infectious disease risk. Proc. R. Soc. B. 273, 109–117 (2006)

    PubMed  Google Scholar 

  9. Keesing, F. et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468, 647–652 (2010)

    CAS  PubMed  ADS  PubMed Central  Google Scholar 

  10. Ostfeld, R. S. & Keesing, F. Effects of host diversity on infectious disease. Annu. Rev. Ecol. Evol. Syst. 43, 157–182 (2012)

    Google Scholar 

  11. Randolph, S. E. & Dobson, A. D. M. Pangloss revisited: a critique of the dilution effect and the biodiversity-buffers-disease paradigm. Parasitology 139, 847–863 (2012)

    CAS  PubMed  Google Scholar 

  12. Hamer, G. L. et al. Fine-scale variation in vector host use and force of infection drive localized patterns of West Nile virus transmission. PLoS ONE 6, e23767 (2011)

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  13. Wood, C. L. & Lafferty, K. D. Biodiversity and disease: a synthesis of ecological perspectives on Lyme disease transmission. Trends Ecol. Evol.. http://dx.doi.org/10.1016/j.tree.2012.10.011 (23 November 2012)

  14. Raymundo, L. J., Halford, A. R., Maypa, A. P. & Kerr, A. M. Functionally diverse reef-fish communities ameliorate coral disease. Proc. Natl Acad. Sci. USA 106, 17067–17070 (2009)

    CAS  PubMed  ADS  PubMed Central  Google Scholar 

  15. Kilpatrick, A. M. Globalization, land use, and the invasion of West Nile virus. Science 334, 323–327 (2011)

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  16. Keesing, F., Holt, R. D. & Ostfeld, R. S. Effects of species diversity on disease risk. Ecol. Lett. 9, 485–498 (2006)

    CAS  PubMed  Google Scholar 

  17. Suzán, G. et al. Experimental evidence for reduced rodent diversity causing increased Hantavirus prevalence. PLoS ONE 4, e5461 (2009)

    PubMed  PubMed Central  ADS  Google Scholar 

  18. Searle, C. L., Biga, L. M., Spatafora, J. W. & Blaustein, A. R. A dilution effect in the emerging amphibian pathogen Batrachochytrium dendrobatidis. Proc. Natl Acad. Sci. USA 108, 16322–16326 (2011)

    CAS  PubMed  ADS  PubMed Central  Google Scholar 

  19. Johnson, P. T. J. et al. Species diversity reduces parasite infection through cross-generational effects on host abundance. Ecology 93, 56–64 (2012)

    PubMed  Google Scholar 

  20. Ostfeld, R. S. & LoGiudice, K. Community disassembly, biodiversity loss, and the erosion of an ecosystem service. Ecology 84, 1421–1427 (2003)

    Google Scholar 

  21. Ricklefs, R. E. Community diversity: relative roles of local and regional processes. Science 235, 167–171 (1987)

    CAS  PubMed  ADS  Google Scholar 

  22. Bracken, M. E. S., Friberg, S. E., Gonzalez-Dorantes, C. A. & Williams, S. L. Functional consequences of realistic biodiversity changes in a marine ecosystem. Proc. Natl Acad. Sci. USA 105, 924–928 (2008)

    CAS  PubMed  ADS  PubMed Central  Google Scholar 

  23. Johnson, P. T. J. et al. Living fast and dying of infection: host life history drives interspecific variation in infection and disease risk. Ecol. Lett. 15, 235–242 (2012)

    PubMed  Google Scholar 

  24. Graham, S. P., Hassan, H. K., Burkett-Cadena, N. D., Guyer, C. & Unnasch, T. R. Nestedness of ectoparasite-vertebrate host networks. PLoS ONE 4, e7873 (2009)

    PubMed  PubMed Central  ADS  Google Scholar 

  25. Ricklefs, R. E. & Wikelski, M. The physiology/life-history nexus. Trends Ecol. Evol. 17, 462–468 (2002)

    Google Scholar 

  26. Lee, K. A., Wikelski, M., Robinson, W. D., Robinson, T. R. & Klasing, K. C. Constitutive immune defences correlate with life-history variables in tropical birds. J. Anim. Ecol. 77, 356–363 (2008)

    CAS  PubMed  Google Scholar 

  27. Purvis, A., Gittleman, J. L., Cowlishaw, G. & Mace, G. M. Predicting extinction risk in declining species. Proc. R. Soc. Lond. B. 267, 1947–1952 (2000)

    CAS  Google Scholar 

  28. Hechinger, R. F. & Lafferty, K. D. Host diversity begets parasite diversity: bird final hosts and trematodes in snail intermediate hosts. Proc. R. Soc. B. 272, 1059–1066 (2005)

    PubMed  PubMed Central  Google Scholar 

  29. Johnson, P. T. J. & Hoverman, J. T. Parasite diversity and coinfection determine pathogen infection success and host fitness. Proc. Natl Acad. Sci. USA 109, 9006–9011 (2012)

    CAS  PubMed  ADS  PubMed Central  Google Scholar 

  30. Johnson, P. T. J. & Buller, I. D. Parasite competition hidden by correlated coinfection: using surveys and experiments to understand parasite interactions. Ecology 92, 535–541 (2011)

    PubMed  Google Scholar 

  31. Johnson, P. T. J. & Hartson, R. B. All hosts are not equal: explaining differential patterns of malformations in an amphibian community. J. Anim. Ecol. 78, 191–201 (2009)

    PubMed  Google Scholar 

  32. Johnson, P. T. J. et al. Living fast and dying of infection: host life history drives interspecific variation in infection and disease risk. Ecol. Lett. 15, 235–242 (2012)

    PubMed  Google Scholar 

  33. Gosner, K. L. A simplified table for staging anuran embryos and larvae with notes and identification. Herpetologica 16, 183–190 (1960)

    Google Scholar 

  34. Wong, C. J. & Liversage, R. A. Limb developmental stages of the newt Notophthalmus viridescens. Int. J. Dev. Biol. 49, 375–389 (2005)

    PubMed  Google Scholar 

  35. Hillis, D. M. & Wilcox, T. P. Phylogeny of the New World true frogs (Rana). Mol. Phylogenet. Evol. 34, 299–314 (2005)

    PubMed  Google Scholar 

  36. Shaffer, H. B., Clark, J. M. & Kraus, F. When molecules and morphology clash: a phylogenetic analysis of the North American ambystomatid salamanders (Caudata: Ambystomatidae). Syst. Zool. 40, 284–303 (1991)

    Google Scholar 

  37. Mitchell, C. E., Reich, P. B., Tilman, D. & Groth, J. V. Effects of elevated CO2, nitrogen deposition, and decreased species diversity on foliar fungal plant disease. Glob. Change Biol. 9, 438–451 (2003)

    ADS  Google Scholar 

  38. Guimarães, P. R., Jr & Guimarães, P. Improving the analyses of nestedness for large sets of matrices. Environ. Modell. Softw. 21, 1512–1513 (2006)

    Google Scholar 

  39. Atmar, W. & Patterson, B. D. The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia 96, 373–382 (1993)

    PubMed  ADS  Google Scholar 

  40. Bolker, B. M. et al. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135 (2009)

    PubMed  Google Scholar 

  41. Zuur, A. F., Leno, E. N., Wlaker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009)

    Google Scholar 

  42. Magurran, A. E. Measuring Biological Diversity (Blackwell Publishing, 2004)

    Google Scholar 

  43. Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference (Springer, 2002)

    MATH  Google Scholar 

Download references

Acknowledgements

We thank B. Hoye, J. Koprivnikar, K. Medley, J. Rohr and especially Y. Springer for editorial suggestions; S. Johnson for valuable statistical advice; M. Baragona, I. Buller, K. Gietzen, B. Goodman, J. Jenkins, E. Kellermanns, B. LaFonte, T. McDevitt-Galles, J. McFarland and S. Paull for assistance in collecting data; and East Bay Regional Parks, East Bay Municipal Utility District, Santa Clara County Parks, Hopland Research and Extension Center, Blue Oak Ranch Reserve, California State Parks, The Nature Conservancy, Open Space Authority and Mid-peninsula Open Space for access to properties and logistical support. This work was supported through funds from the US National Science Foundation (DEB-0841758, DEB-1149308), the National Geographic Society, and the David and Lucile Packard Foundation.

Author information

Authors and Affiliations

Authors

Contributions

P.T.J.J. designed the study, D.L.P., K.L.D.R. and P.T.J.J. collected the data, P.T.J.J. and J.T.H. analysed the data, and all authors wrote the manuscript.

Corresponding author

Correspondence to Pieter T. J. Johnson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Supplementary References and Supplementary Figures 1-4. (PDF 882 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, P., Preston, D., Hoverman, J. et al. Biodiversity decreases disease through predictable changes in host community competence. Nature 494, 230–233 (2013). https://doi.org/10.1038/nature11883

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11883

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing