In the era of precision cosmology, it is essential to determine the Hubble constant to an accuracy of three per cent or better1,2. At present, its uncertainty is dominated by the uncertainty in the distance to the Large Magellanic Cloud (LMC), which, being our second-closest galaxy, serves as the best anchor point for the cosmic distance scale2,3. Observations of eclipsing binaries offer a unique opportunity to measure stellar parameters and distances precisely and accurately4,5. The eclipsing-binary method was previously applied to the LMC6,7, but the accuracy of the distance results was lessened by the need to model the bright, early-type systems used in those studies. Here we report determinations of the distances to eight long-period, late-type eclipsing systems in the LMC, composed of cool, giant stars. For these systems, we can accurately measure both the linear and the angular sizes of their components and avoid the most important problems related to the hot, early-type systems. The LMC distance that we derive from these systems (49.97 ± 0.19 (statistical) ± 1.11 (systematic) kiloparsecs) is accurate to 2.2 per cent and provides a firm base for a 3-per-cent determination of the Hubble constant, with prospects for improvement to 2 per cent in the future.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    et al. Seven-year Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation. Astrophys. J. Suppl. Ser. 192, 18–65 (2011)

  2. 2.

    & The Hubble constant. Annu. Rev. Astron. Astrophys. 48, 673–710 (2010)

  3. 3.

    A problem with the clustering of recent measures of the distance to the Large Magellanic Cloud. Astron. J. 135, 112–119 (2008)

  4. 4.

    Distances to eclipsing binaries: an application of the Barnes-Evans relation. Astrophys. J. 213, 458–463 (1977)

  5. 5.

    in The Extragalactic Distance Scale (eds Livio, M., Donahue, M. & Panagia, N.) 273–280 (Space Telescope Sci. Inst. Ser., Cambridge Univ. Press, 1997)

  6. 6.

    The distance to the Large Magellanic Cloud from the eclipsing binary HV 2274. Astrophys. J. 509, L21–L24 (1998)

  7. 7.

    , , , & Fundamental properties and distances of Large Magellanic Cloud eclipsing binaries. IV. HV 5936. Astrophys. J. 587, 685–700 (2003)

  8. 8.

    & The LMC eclipsing binary HV 2274 revisited. Astrophys. J. 366, 752–764 (2001)

  9. 9.

    et al. The Araucaria project: an accurate distance to the late-type double-lined eclipsing binary OGLE SMC113.3 4007 in the Small Magellanic Cloud. Astrophys. J. 750, 144–156 (2012)

  10. 10.

    et al. The Optical Gravitational Lensing Experiment: OGLE-III photometric maps of the Large Magellanic Cloud. Acta Astron. 58, 89–102 (2008)

  11. 11.

    et al. The Optical Gravitational Lensing Experiment: the OGLE-III catalog of variable stars. XII. Eclipsing binary stars in the Large Magellanic Cloud. Acta Astron. 61, 103–122 (2011)

  12. 12.

    & Nearby Hipparcos eclipsing binaries for color-surface brightness calibration. Acta Astron. 49, 561–575 (1999)

  13. 13.

    et al. The Araucaria project: determination of the Large Magellanic Cloud distance from late-type eclipsing binary systems. I. OGLE051019.64–685812.3. Astrophys. J. 697, 862–866 (2009)

  14. 14.

    & Realization of accurate close-binary light curves: application to MR Cygni. Astrophys. J. 166, 605–620 (1971)

  15. 15.

    & Third-body parameters from whole light and velocity curves. Astrophys. J. 661, 1129–1151 (2007)

  16. 16.

    Predicting accurate stellar angular diameters by the near-infrared surface brightness technique. Mon. Not. R. Astron. Soc. 357, 174–190 (2005)

  17. 17.

    et al. Cluster AgeS Experiment. The age and distance of the globular cluster ω Centauri determined from observations of the eclipsing binary OGLEGC 17. Astron. J. 121, 3089–3099 (2001)

  18. 18.

    , , & New understanding of Large Magellanic Cloud structure, dynamics, and orbit from carbon star kinematics. Astron. J. 124, 2639–2663 (2002)

  19. 19.

    NED for a new era. Astron. Soc. Pacif. Conf. 376, 153–162 (2007)

  20. 20.

    Walker, A. R. The Large Magellanic Cloud and the distance scale. Astrophys. Space Sci. 341, 43–49 (2012)

  21. 21.

    Monson, A. J. et al. The Carnegie Hubble Program: The Leavitt Law at 3.6 and 4.5 μm in the Milky Way. Astrophys. J. 759, 146–165 (2012)

  22. 22.

    , , & The distance to the massive eclipsing binary LMC-SC1–105 in the Large Magellanic Cloud. Astrophys. J. 729, L9–L15 (2011)

  23. 23.

    et al. Final results from the Hubble Space Telescope key project to measure the Hubble constant. Astrophys. J. 553, 47–72 (2001)

  24. 24.

    et al. A 3% solution: determination of the Hubble constant with the Hubble Space Telescope and Wide Field Camera 3. Astrophys. J. 730, 119–137 (2011)

  25. 25.

    et al. Hubble Space Telescope fine guidance sensor parallaxes of galactic Cepheid variable stars: period-luminosity relations. Astron. J. 133, 1810–1827 (2007)

  26. 26.

    & On the use of trigonometric parallaxes for the calibration of luminosity systems: theory. Publ. Astron. Soc. Pacif. 85, 573–578 (1973)

  27. 27.

    , , & Cepheid parallaxes and the Hubble constant. Mon. Not. R. Astron. Soc. 379, 723–737 (2007)

  28. 28.

    The All Sky Automated Survey. Acta Astron. 47, 467–481 (1997)

Download references


We acknowledge financial support for this work from the BASAL Centro de Astrofísica y Tecnologias Afines (CATA), the Polish Ministry of Science, the Foundation for Polish Science (FOCUS, TEAM), the Polish National Science Centre and the GEMINI-CONICYT fund. The OGLE project has received funding from the European Research Council ‘Advanced Grant’ Program. We thank the staff astronomers at Las Campanas and ESO La Silla, who provided expert support in data acquisition. We thank J. F. Gonzalez for making the IRAF scripts rvbina and spbina available to us. We also thank O. Szewczyk and Z. Kołaczkowski for their help with some of the observations.

Author information


  1. Universidad de Concepción, Departamento de Astronomía, Casilla 160-C, Concepción, Chile

    • G. Pietrzyński
    • , D. Graczyk
    • , W. Gieren
    • , B. Pilecki
    • , S. Villanova
    •  & A. Gallenne
  2. Warsaw University Observatory, Aleje Ujazdowskie 4, 00-478 Warszawa, Poland

    • G. Pietrzyński
    • , B. Pilecki
    • , A. Udalski
    • , I. Soszyński
    • , S. Kozłowski
    • , P. Konorski
    • , K. Suchomska
    • , M. Kubiak
    • , M. K. Szymański
    • , R. Poleski
    • , Ł. Wyrzykowski
    • , K. Ulaczyk
    • , P. Pietrukowicz
    • , M. Górski
    •  & P. Karczmarek
  3. Carnegie Observatories, 813 Santa Barbara Street, Pasadena, California 91101-1292, USA

    • I. B. Thompson
  4. Dipartimento di Fisica Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy

    • G. Bono
  5. INAF-Osservatorio Astronomico di Roma, Via Frascati 33, 00040 Monte Porzio Catone, Italy

    • G. Bono
  6. Dipartimento di Fisica Università di Pisa, Largo B. Pontecorvo 2, 56127 Pisa, Italy

    • P. G. Prada Moroni
  7. INFN, Sezione di Pisa, Via E. Fermi 2, 56127 Pisa, Italy

    • P. G. Prada Moroni
  8. Laboratoire Lagrange, UMR7293, UNS/CNRS/OCA, 06300 Nice, France

    • N. Nardetto
  9. Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, Hawaii 96822, USA

    • F. Bresolin
    •  & R. P. Kudritzki
  10. Leibniz Institute for Astrophysics, An der Sternwarte 16, 14482 Postdam, Germany

    • J. Storm
  11. Nicolaus Copernicus Astronomical Centre, Bartycka 18, 00-716 Warszawa, Poland

    • R. Smolec
  12. Departamento de Astronomía y Astrofísica, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Casilla 306, Santiago 22, Chile

    • D. Minniti
  13. Vatican Observatory, V00120 Vatican City, Italy

    • D. Minniti
  14. Ohio State University, 140 West 18th Avenue, Columbus, Ohio 43210, USA

    • R. Poleski


  1. Search for G. Pietrzyński in:

  2. Search for D. Graczyk in:

  3. Search for W. Gieren in:

  4. Search for I. B. Thompson in:

  5. Search for B. Pilecki in:

  6. Search for A. Udalski in:

  7. Search for I. Soszyński in:

  8. Search for S. Kozłowski in:

  9. Search for P. Konorski in:

  10. Search for K. Suchomska in:

  11. Search for G. Bono in:

  12. Search for P. G. Prada Moroni in:

  13. Search for S. Villanova in:

  14. Search for N. Nardetto in:

  15. Search for F. Bresolin in:

  16. Search for R. P. Kudritzki in:

  17. Search for J. Storm in:

  18. Search for A. Gallenne in:

  19. Search for R. Smolec in:

  20. Search for D. Minniti in:

  21. Search for M. Kubiak in:

  22. Search for M. K. Szymański in:

  23. Search for R. Poleski in:

  24. Search for Ł. Wyrzykowski in:

  25. Search for K. Ulaczyk in:

  26. Search for P. Pietrukowicz in:

  27. Search for M. Górski in:

  28. Search for P. Karczmarek in:


G.P.: photometric and spectroscopic observations and reductions. D.G.: spectroscopic observations, modelling and data analysis. W.G.: observations and data analysis. I.B.T.: observations, RV determination, data analysis. B.P.: spectroscopic observations and reductions, RV measurements. A.U., I.S. and S. K.: optical observations and data reductions. P.K., K.S., M.K., M.K.S., R.P., Ł.W., K.U., P.P., M.G. and P.K.: observations. G.B., P.G.P.M., N.N., F.B., R.P.K., J.S., A.G. and R.S.: data analysis. S.V.: analysis of the spectra. G.P. and W.G. worked jointly to draft the manuscript with all authors reviewing and contributing to its final form

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to G. Pietrzyński.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    This file contains Text and Data 1-4, Supplementary Tables 1-13, Supplementary Figure 1 and additional references.

About this article

Publication history






Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.