Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube

Abstract

New models of fluid transport are expected to emerge from the confinement of liquids at the nanoscale1,2, with potential applications in ultrafiltration, desalination and energy conversion3. Nevertheless, advancing our fundamental understanding of fluid transport on the smallest scales requires mass and ion dynamics to be ultimately characterized across an individual channel to avoid averaging over many pores. A major challenge for nanofluidics thus lies in building distinct and well-controlled nanochannels, amenable to the systematic exploration of their properties. Here we describe the fabrication and use of a hierarchical nanofluidic device made of a boron nitride nanotube that pierces an ultrathin membrane and connects two fluid reservoirs. Such a transmembrane geometry allows the detailed study of fluidic transport through a single nanotube under diverse forces, including electric fields, pressure drops and chemical gradients. Using this device, we discover very large, osmotically induced electric currents generated by salinity gradients, exceeding by two orders of magnitude their pressure-driven counterpart. We show that this result originates in the anomalously high surface charge carried by the nanotube’s internal surface in water at large pH, which we independently quantify in conductance measurements. The nano-assembly route using nanostructures as building blocks opens the way to studying fluid, ionic and molecule transport on the nanoscale, and may lead to biomimetic functionalities. Our results furthermore suggest that boron nitride nanotubes could be used as membranes for osmotic power harvesting under salinity gradients.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Hierarchical single nanotube nanofluidic set-up.
Figure 2: Electrical conductance and chemical reactivity of the BNNT.
Figure 3: Pressure-driven streaming.
Figure 4: Osmotic power generation under salinity gradients.

References

  1. 1

    Sparreboom, W., van den Berg, A. & Eijkel, J. C. T. Principles and applications of nanofluidic transport. Nature Nanotechnol. 4, 713–720 (2009)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Rasaiah, J. C., Garde, S. & Hummer, G. Water in non polar confinement: from nanotubes to proteins and beyond. Annu. Rev. Phys. Chem. 59, 713–740 (2008)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Logan, B. E. & Elimelech, M. Membrane-based processes for sustainable power generation using water. Nature 488, 313–319 (2012)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Bocquet, L. & Charlaix, E. Nanofluidics, from bulk to interfaces. Chem. Soc. Rev. 39, 1073–1095 (2010)

    CAS  Article  Google Scholar 

  5. 5

    Karnik, R., Duan, C., Castelino, K., Daiguji, H. & Majumdar, A. Rectification of ionic current in a nanofluidic diode. Nano Lett. 7, 547–551 (2007)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Siwy, Z. & Fulinski, A. Fabrication of a synthetic nanopore ion pump. Phys. Rev. Lett. 89, 198103 (2002)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Schasfoort, R. B. M., Schlautmann, S., Hendrikse, J. & van den Berg, A. Field-effect flow control for microfabricated fluidic networks. Science 286, 942–945 (1999)

    CAS  Article  Google Scholar 

  8. 8

    Majumder, M., Chopra, N., Andrews, R. & Hinds, B. J. Enhanced flow in carbon nanotubes. Nature 438, 44 (2005)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Holt, J. K. et al. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034–1037 (2006)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Whitby, M., Cagnon, L. & Thanou, M. &. Quirke, N. Enhanced fluid flow through nanoscale carbon pipes. Nano Lett. 8, 2632–2637 (2008)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Liu, H. et al. Translocation of single stranded DNA through single-walled carbon nanotubes. Science 327, 64–67 (2010)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Hummer, G., Rasaiah, J. C. & Noworyta, J. P. Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414, 188–190 (2001)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Falk, K., Sedlmeier, F., Joly, L. & Netz, R. R. &. Bocquet, L. Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction. Nano Lett. 10, 4067–4073 (2010)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Joseph, S. & Aluru, N. R. Why are carbon nanotubes fast transporters of water? Nano Lett. 8, 452–458 (2008)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Arenal, R., Blase, X. & Loiseau, A. Boron-nitride and boron-carbonitride nanotubes: synthesis, characterization and theory. Adv. Phys. 59, 101–179 (2010)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Won, C. Y. & Aluru, N. R. Water permeation through a subnanometer boron nitride nanotube. J. Am. Chem. Soc. 129, 2748–2749 (2007)

    CAS  Article  Google Scholar 

  17. 17

    Hilder, T. A., Gordon, D., Chung, S.-H. & Salt rejection and water transport through boron nitride nanotubes. Small 5, 2183–2190 (2009)

    CAS  Article  Google Scholar 

  18. 18

    Li, J. et al. Nanoscale ion beam sculpting. Nature 412, 166–169 (2001)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Dekker, C. Solid state nanopores. Nature Nanotechnol. 2, 209–215 (2007)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Anderson, J. L. Colloid transport by interfacial forces. Annu. Rev. Fluid Mech. 21, 61–99 (1989)

    ADS  Article  Google Scholar 

  21. 21

    Fair, J. C. & Osterle, J. F. Reverse electrodialysis in charged capillary membranes. J. Chem. Phys. 54, 3307–3316 (1971)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Stein, D., Kruithof, M. & Dekker, C. Surface charge governed ion transport in nanofluidic channels. Phys. Rev. Lett. 93, 035901 (2004)

    ADS  Article  Google Scholar 

  23. 23

    Hunter, R. J. Foundations of Colloid Science (Oxford Univ. Press, 1991)

    Google Scholar 

  24. 24

    Crimp, M. J., Oppermann, D. A. & Krehbiel, K. Suspension properties of hexagonal BN powders: effect of pH and oxygen content. J. Mater. Sci. 34, 2621–2625 (1999)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Schmidt, T. M., Baierle, R. J., Piquini, P. & Fazzio, A. Theoretical study of native defects in BN nanotubes. Phys. Rev. B 67, 113407 (2003)

    ADS  Article  Google Scholar 

  26. 26

    Wang, J., Pedroza, L. S., Poissier, A. & Fernandez-Serra, M. V. Water dissociation at the GaN surface: structure, dynamics and surface acidity. J. Phys. Chem. C 116, 14382–14389 (2012)

    CAS  Article  Google Scholar 

  27. 27

    Altug, I. & Hair, M. L. Cation exchange in porous glass. J. Phys. Chem. 71, 4260–4263 (1967)

    CAS  Article  Google Scholar 

  28. 28

    Bonthuis, D. & Netz, R. Unraveling the effects of dielectric and viscosity profiles on electro-osmotic mobility and electric surface conductivity. Langmuir 28, 16049–16059 (2012)

    CAS  Article  Google Scholar 

  29. 29

    Kim, D.-K., Duan, C., Chen, Y.-F. & Majumdar, A. Power generation from concentration gradient by reverse electrodialysis in ion-selective nanochannels. Microfluid. Nanofluid. 9, 1215–1224 (2010)

    CAS  Article  Google Scholar 

  30. 30

    Bechelany, M. et al. Synthesis of boron nitride nanotubes by a template-assisted polymer thermolysis process. J. Phys. Chem. C 111, 13378–13384 (2007)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

L.B. acknowledges support from ERC-AG project Micromegas and the French ANR under the programme P3N. We thank D. Cornu, M. Bechelany, A. Brioude for providing the boron nitride nanotubes, D. Guillot for building the experimental fluidic set-up and P. Vincent for assistance with the SEM. L.B. thanks M.-L. Bocquet for discussions on boron nitride chemistry. We thank L. Auvray, E. Charlaix, C. Cottin-Bizonne, J. Gierak, D. M. Huang, L. Joly, A. Madouri, R. Netz, J. Palacci and C. Ybert for many discussions. We thank the Centre Lyonnais de Microscopie for providing access to the dual-beam FIB.

Author information

Affiliations

Authors

Contributions

L.B. conceived the project. P.P. and S.T.P. designed the transmembrane nanotube system. A.S. and P.P. constructed the experimental device with contributions from R.F. and A.-L.B. A.S., A.-L.B. and L.B. designed the fluidic system (with input from P.P.), performed measurements and conducted the experimental analysis. X.B. performed the ab initio simulations. L.B. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Lydéric Bocquet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, Supplementary Figures 1- 15, Supplementary Tables 1-2 and additional references (see Contents for more details). (PDF 6216 kb)

Water dissociation on BN surface

Ab initio simulations for a water molecule approaching to a BN sheet with a single hydrogen atom binded to a nitrogen atom. Water dissociation takes place when the water molecule comes close to the active site of the BN sheet: the oxygen of a water molecule binds to a Boron atom adjacent to the H-binded nitrogen, releasing an H atom. Boron, nitrogen, oxygen and hydrogen atoms are in pink, blue, red and white respectively. (MPG 252 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Siria, A., Poncharal, P., Biance, AL. et al. Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube. Nature 494, 455–458 (2013). https://doi.org/10.1038/nature11876

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing