Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

mTOR is a key modulator of ageing and age-related disease

Subjects

Abstract

Many experts in the biology of ageing believe that pharmacological interventions to slow ageing are a matter of 'when' rather than 'if'. A leading target for such interventions is the nutrient response pathway defined by the mechanistic target of rapamycin (mTOR). Inhibition of this pathway extends lifespan in model organisms and confers protection against a growing list of age-related pathologies. Characterized inhibitors of this pathway are already clinically approved, and others are under development. Although adverse side effects currently preclude use in otherwise healthy individuals, drugs that target the mTOR pathway could one day become widely used to slow ageing and reduce age-related pathologies in humans.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The two mTOR complexes have distinct constituent proteins and regulate different downstream processes.
Figure 2: Interactions between mTOR and other longevity pathways.
Figure 3: The impact of mTORC1 on diseases of ageing.

References

  1. 1

    Laplante, M. & Sabatini, D. M. mTOR signaling in growth control and disease. Cell 149, 274–293 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2

    Stanfel, M. N., Shamieh, L. S., Kaeberlein, M. & Kennedy, B. K. The TOR pathway comes of age. Biochim. Biophys. Acta 1790, 1067–1074 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3

    Lamming, D. W. et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 335, 1638–1643 (2012). This study uses genetic models to confirm that reduced mTORC1 activity extends lifespan in mammals, and reports that the insulin resistance associated with chronic mTORC1 inhibition is caused by altered mTORC2 signalling and is not causally involved in lifespan extension.

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4

    Fabrizio, P., Pozza, F., Pletcher, S. D., Gendron, C. M. & Longo, V. D. Regulation of longevity and stress resistance by Sch9 in yeast. Science 292, 288–290 (2001).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5

    Jia, K., Chen, D. & Riddle, D. L. The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development 131, 3897–3906 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6

    Vellai, T. et al. Influence of TOR kinase on lifespan in C. elegans. Nature 426, 620 (2003).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7

    Kapahi, P. et al. Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr. Biol. 14, 885–890 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8

    Kaeberlein, M. et al. Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310, 1193–1196 (2005).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9

    Powers, R. W. III, Kaeberlein, M., Caldwell, S. D., Kennedy, B. K. & Fields, S. Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev. 20, 174–184 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10

    Medvedik, O., Lamming, D. W., Kim, K. D. & Sinclair, D. A. MSN2 and MSN4 link calorie restriction and TOR to sirtuin-mediated lifespan extension in Saccharomyces cerevisiae. PLoS Biol. 5, e261 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  11. 11

    Robida-Stubbs, S. et al. TOR signaling and rapamycin influence longevity by regulating SKN-1/Nrf and DAF-16/FoxO. Cell Metab. 15, 713–724 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12

    Bjedov, I. et al. Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab. 11, 35–46 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13

    Harrison, D. E. et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460, 392–395 (2009). This study reports lifespan extension from mTORC1 inhibition in a mammal.

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14

    Miller, R. A. et al. Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J. Gerontol. A Biol. Sci. Med. Sci. 66, 191–201 (2011).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  15. 15

    Anisimov, V. N. et al. Rapamycin increases lifespan and inhibits spontaneous tumorigenesis in inbred female mice. Cell Cycle 10, 4230–4236 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16

    Fontana, L., Partridge, L. & Longo, V. D. Extending healthy lifespan — from yeast to humans. Science 328, 321–326 (2010).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17

    Hansen, M. et al. Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell 6, 95–110 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18

    Zid, B. M. et al. 4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila. Cell 139, 149–160 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19

    Kenyon, C. J. The genetics of ageing. Nature 464, 504–512 (2010).

    ADS  CAS  PubMed  Article  Google Scholar 

  20. 20

    Takano, A. et al. Mammalian target of rapamycin pathway regulates insulin signaling via subcellular redistribution of insulin receptor substrate 1 and integrates nutritional signals and metabolic signals of insulin. Mol. Cell. Biol. 21, 5050–5062 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21

    Khatri, S., Yepiskoposyan, H., Gallo, C. A., Tandon, P. & Plas, D. R. FOXO3a regulates glycolysis via transcriptional control of tumor suppressor TSC1. J. Biol. Chem. 285, 15960–15965 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22

    Tettweiler, G., Miron, M., Jenkins, M., Sonenberg, N. & Lasko, P. F. Starvation and oxidative stress resistance in Drosophila are mediated through the eIF4E-binding protein, d4E-BP. Genes Dev. 19, 1840–1843 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23

    Guertin, D. A. et al. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCα, but not S6K1. Dev. Cell 11, 859–871 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24

    Pan, K. Z. et al. Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans. Aging Cell 6, 111–119 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25

    Apfeld, J., O'Connor, G., McDonagh, T., DiStefano, P. S. & Curtis, R. The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. Genes Dev. 18, 3004–3009 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26

    Onken, B. & Driscoll, M. Metformin induces a dietary restriction-like state and the oxidative stress response to extend C. elegans healthspan via AMPK, LKB1, and SKN-1. PLoS ONE 5, e8758 (2010).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  27. 27

    Anisimov, V. N. Metformin for aging and cancer prevention. Aging (Albany NY) 2, 760–774 (2010).

    CAS  Article  Google Scholar 

  28. 28

    Inoki, K., Zhu, T. & Guan, K. L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577–590 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29

    Gwinn, D. M. et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30, 214–226 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30

    Mair, W. et al. Lifespan extension induced by AMPK and calcineurin is mediated by CRTC-1 and CREB. Nature 470, 404–408 (2011).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31

    Leiser, S. F. & Kaeberlein, M. The hypoxia-inducible factor HIF-1 functions as both a positive and negative modulator of aging. Biol. Chem. 391, 1131–1137 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32

    Hudson, C. C. et al. Regulation of hypoxia-inducible factor 1α expression and function by the mammalian target of rapamycin. Mol. Cell. Biol. 22, 7004–7014 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33

    Mehta, R. et al. Proteasomal regulation of the hypoxic response modulates aging in C. elegans. Science 324, 1196–1198 (2009).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34

    Zhang, Y., Shao, Z., Zhai, Z., Shen, C. & Powell-Coffman, J. A. The HIF-1 hypoxia-inducible factor modulates lifespan in C. elegans. PLoS ONE 4, e6348 (2009).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  35. 35

    Leiser, S. F., Begun, A. & Kaeberlein, M. HIF-1 modulates longevity and healthspan in a temperature-dependent manner. Aging Cell 10, 318–326 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36

    Chen, D., Thomas, E. L. & Kapahi, P. HIF-1 modulates dietary restriction-mediated lifespan extension via IRE-1 in Caenorhabditis elegans. PLoS Genet. 5, e1000486 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  37. 37

    Selman, C. et al. Ribosomal protein S6 kinase 1 signaling regulates mammalian lifespan. Science 326, 140–144 (2009). This study shows that knockout of the mTORC1 substrate S6K1 extends lifespan in mice.

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38

    Colman, R. J. et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325, 201–204 (2009).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39

    Fries, J. F. Aging, natural death, and the compression of morbidity. N. Engl. J. Med. 303, 130–135 (1980).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40

    Wilkinson, J. E. et al. Rapamycin slows aging in mice. Aging Cell 11, 675–682 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41

    Halloran, J. et al. Chronic inhibition of mammalian target of rapamycin by rapamycin modulates cognitive and non-cognitive components of behavior throughout lifespan in mice. Neuroscience 223, 102–113 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42

    Majumder, S. et al. Lifelong rapamycin administration ameliorates age-dependent cognitive deficits by reducing IL-1β and enhancing NMDA signaling. Aging Cell 11, 326–335 (2012). References 41 and 42 report that rapamycin improves cognitive function and protects against age-related cognitive decline in mice.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43

    Kaeberlein, M. & Kennedy, B. K. Hot topics in aging research: protein translation and TOR signaling. Aging Cell 10, 185–190 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44

    Smith, E. D. et al. Quantitative evidence for conserved longevity pathways between divergent eukaryotic species. Genome Res. 18, 564–570 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45

    Kaeberlein, M. & Kennedy, B. K. Protein translation. Aging Cell 6, 731–734 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46

    Blagosklonny, M. V. Aging and immortality: quasi-programmed senescence and its pharmacologic inhibition. Cell Cycle 5, 2087–2102 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47

    Steffen, K. K. et al. Yeast lifespan extension by depletion of 60S ribosomal subunits is mediated by Gcn4. Cell 133, 292–302 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48

    Rogers, A. N. et al. Lifespan extension via eIF4G inhibition is mediated by post-transcriptional remodeling of stress response gene expression in C. elegans. Cell Metab. 14, 55–66 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49

    Thoreen, C. C. et al. A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 485, 109–113 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50

    Mizushima, N., Levine, B., Cuervo, A. M. & Klionsky, D. J. Autophagy fights disease through cellular self-digestion. Nature 451, 1069–1075 (2008).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51

    Cuervo, A. M. Autophagy and aging: keeping that old broom working. Trends Genet. 24, 604–612 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52

    Hansen, M. et al. A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet. 4, e24 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  53. 53

    Alvers, A. L. et al. Autophagy is required for extension of yeast chronological life span by rapamycin. Autophagy 5, 847–849 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54

    Wei, M. et al. Life span extension by calorie restriction depends on Rim15 and transcription factors downstream of Ras/PKA, Tor, and Sch9. PLoS Genet. 4, e13 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  55. 55

    Bishop, N. A. & Guarente, L. Two neurons mediate diet-restriction-induced longevity in C. elegans. Nature 447, 545–549 (2007).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  56. 56

    Steinbaugh, M. J., Sun, L. Y., Bartke, A. & Miller, R. A. Activation of genes involved in xenobiotic metabolism is a shared signature of mouse models with extended lifespan. Am. J. Physiol. Endocrinol. Metab. 303, E488–E495 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57

    Cunningham, J. T. et al. mTOR controls mitochondrial oxidative function through a YY1–PGC-1α transcriptional complex. Nature 450, 736–740 (2007).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  58. 58

    Bonawitz, N. D., Chatenay-Lapointe, M., Pan, Y. & Shadel, G. S. Reduced TOR signaling extends chronological lifespan via increased respiration and upregulation of mitochondrial gene expression. Cell Metab. 5, 265–277 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59

    Pan, Y., Schroeder, E. A., Ocampo, A., Barrientos, A. & Shadel, G. S. Regulation of yeast chronological lifespan by TORC1 via adaptive mitochondrial ROS signaling. Cell Metab. 13, 668–678 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. 60

    Polak, P. et al. Adipose-specific knockout of raptor results in lean mice with enhanced mitochondrial respiration. Cell Metab. 8, 399–410 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  61. 61

    Chung, H. Y. et al. Molecular inflammation: underpinnings of aging and age-related diseases. Ageing Res. Rev. 8, 18–30 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  62. 62

    Morgan, T. E., Wong, A. M. & Finch, C. E. Anti-inflammatory mechanisms of dietary restriction in slowing aging processes. Interdiscip. Top. Gerontol. 35, 83–97 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Liu, Y. Rapamycin and chronic kidney disease: beyond the inhibition of inflammation. Kidney Int. 69, 1925–1927 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  64. 64

    Nuhrenberg, T. G. et al. Rapamycin attenuates vascular wall inflammation and progenitor cell promoters after angioplasty. FASEB J. 19, 246–248 (2005).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  65. 65

    Chen, W. Q. et al. Oral rapamycin attenuates inflammation and enhances stability of atherosclerotic plaques in rabbits independent of serum lipid levels. Br. J. Pharmacol. 156, 941–951 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. 66

    Abdulrahman, B. A. et al. Autophagy stimulation by rapamycin suppresses lung inflammation and infection by Burkholderia cenocepacia in a model of cystic fibrosis. Autophagy 7, 1359–1370 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. 67

    Sharpless, N. E. & DePinho, R. A. How stem cells age and why this makes us grow old. Nature Rev. Mol. Cell Biol. 8, 703–713 (2007).

    CAS  Article  Google Scholar 

  68. 68

    Chen, C., Liu, Y. & Zheng, P. mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci. Signal. 2, ra75 (2009).

    PubMed  PubMed Central  Google Scholar 

  69. 69

    Yilmaz, O. H. et al. mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake. Nature 486, 490–495 (2012). This study shows that rapamycin protects against loss of intestinal stem-cell function during ageing by preserving the stem-cell niche.

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. 70

    Cerletti, M., Jang, Y. C., Finley, L. W., Haigis, M. C. & Wagers, A. J. Short-term calorie restriction enhances skeletal muscle stem cell function. Cell Stem Cell 10, 515–519 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. 71

    Ramos, F. J. & Kaeberlein, M. A healthy diet for stem cells. Nature 486, 477–478 (2012).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  72. 72

    Singh-Manoux, A. et al. Timing of onset of cognitive decline: results from Whitehall II prospective cohort study. Br. Med. J. 344, d7622 (2012).

    Article  Google Scholar 

  73. 73

    Benjamin, D., Colombi, M., Moroni, C. & Hall, M. N. Rapamycin passes the torch: a new generation of mTOR inhibitors. Nature Rev. Drug Discov. 10, 868–880 (2011).

    CAS  Article  Google Scholar 

  74. 74

    Syntichaki, P., Troulinaki, K. & Tavernarakis, N. eIF4E function in somatic cells modulates ageing in Caenorhabditis elegans. Nature 445, 922–926 (2007).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  75. 75

    Curran, S. P. & Ruvkun, G. Lifespan regulation by evolutionarily conserved genes essential for viability. PLoS Genet. 3, e56 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  76. 76

    Chiocchetti, A. et al. Ribosomal proteins Rpl10 and Rps6 are potent regulators of yeast replicative life span. Exp. Gerontol. 42, 275–286 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  77. 77

    Malagelada, C., Jin, Z. H., Jackson-Lewis, V., Przedborski, S. & Greene, L. A. Rapamycin protects against neuron death in in vitro and in vivo models of Parkinson's disease. J. Neurosci. 30, 1166–1175 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. 78

    Tain, L. S. et al. Rapamycin activation of 4E-BP prevents parkinsonian dopaminergic neuron loss. Nature Neurosci. 12, 1129–1135 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  79. 79

    Majumder, S., Richardson, A., Strong, R. & Oddo, S. Inducing autophagy by rapamycin before, but not after, the formation of plaques and tangles ameliorates cognitive deficits. PLoS ONE 6, e25416 (2011).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. 80

    Spilman, P. et al. Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-β levels in a mouse model of Alzheimer's disease. PLoS ONE 5, e9979 (2010).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  81. 81

    Wang, I. F. et al. Autophagy activators rescue and alleviate pathogenesis of a mouse model with proteinopathies of the TAR DNA-binding protein 43. Proc. Natl Acad. Sci. USA 109, 15024–15029 (2012).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  82. 82

    Garber, K. Targeting mTOR: something old, something new. J. Natl Cancer Inst. 101, 288–290 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  83. 83

    Shioi, T. et al. Rapamycin attenuates load-induced cardiac hypertrophy in mice. Circulation 107, 1664–1670 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  84. 84

    McMullen, J. R. et al. Inhibition of mTOR signaling with rapamycin regresses established cardiac hypertrophy induced by pressure overload. Circulation 109, 3050–3055 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  85. 85

    Ding, Y. et al. Haploinsufficiency of target of rapamycin attenuates cardiomyopathies in adult zebrafish. Circ. Res. 109, 658–669 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. 86

    Ramos, F. J. et al. Rapamycin reverses elevated mTORC1 signaling in lamin A/C-deficient mice, rescues cardiac and skeletal muscle function, and extends survival. Sci. Transl. Med. 4, 144ra103 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  87. 87

    Um, S. H. et al. Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 431, 200–205 (2004).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  88. 88

    Yang, S. B. et al. Rapamycin ameliorates age-dependent obesity associated with increased mTOR signaling in hypothalamic POMC neurons. Neuron 75, 425–436 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. 89

    Jagannath, C. & Bakhru, P. Rapamycin-induced enhancement of vaccine efficacy in mice. Methods Mol. Biol. 821, 295–303 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. 90

    Amiel, E. et al. Inhibition of mechanistic target of rapamycin promotes dendritic cell activation and enhances therapeutic autologous vaccination in mice. J. Immunol. 189, 2151–2158 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. 91

    Araki, K. et al. mTOR regulates memory CD8 T-cell differentiation. Nature 460, 108–112 (2009).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  92. 92

    Lieberthal, W. & Levine, J. S. Mammalian target of rapamycin and the kidney. II. Pathophysiology and therapeutic implications. Am. J. Physiol. Renal Physiol. 303, F180–F191 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  93. 93

    Kolosova, N. G. et al. Prevention of age-related macular degeneration-like retinopathy by rapamycin in rats. Am. J. Pathol. 181, 472–477 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  94. 94

    Yin, L., Ye, S., Chen, Z. & Zeng, Y. Rapamycin preconditioning attenuates transient focal cerebral ischemia/reperfusion injury in mice. Int. J. Neurosci. 122, 748–756 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  95. 95

    Tsai, P. T. et al. Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature 488, 647–651 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. 96

    Ryther, R. C. & Wong, M. Mammalian target of rapamycin (mTOR) inhibition: potential for antiseizure, antiepileptogenic, and epileptostatic therapy. Curr. Neurol. Neurosci. Rep. 12, 410–418 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  97. 97

    Yamaki, K. & Yoshino, S. Preventive and therapeutic effects of rapamycin, a mammalian target of rapamycin inhibitor, on food allergy in mice. Allergy 67, 1259–1270 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  98. 98

    Pierdominici, M., Vacirca, D., Delunardo, F. & Ortona, E. mTOR signaling and metabolic regulation of T cells: new potential therapeutic targets in autoimmune diseases. Curr. Pharm. Des. 17, 3888–3897 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  99. 99

    Nussenblatt, R. B. et al. A randomized pilot study of systemic immunosuppression in the treatment of age-related macular degeneration with choroidal neovascularization. Retina 30, 1579–1587 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  100. 100

    Cao, K. et al. Rapamycin reverses cellular phenotypes and enhances mutant protein clearance in Hutchinson–Gilford progeria syndrome cells. Sci. Transl. Med. 3, 89ra58 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Studies related to this topic in the Kaeberlein laboratory have been supported by NIH grant R01AG039390 and R01AG031108 to M.K. S.C.J. is supported by NIH grant T32AG000057.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Matt Kaeberlein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Johnson, S., Rabinovitch, P. & Kaeberlein, M. mTOR is a key modulator of ageing and age-related disease. Nature 493, 338–345 (2013). https://doi.org/10.1038/nature11861

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links