Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Thin crust as evidence for depleted mantle supporting the Marion Rise

Subjects

Abstract

The global ridge system is dominated by oceanic rises reflecting large variations in axial depth associated with mantle hotspots. The little-studied Marion Rise is as large as the Icelandic Rise, considering both length and depth, but has an axial rift (rather than a high) nearly its entire length. Uniquely along the Southwest Indian Ridge systematic sampling allows direct examination of crustal architecture over its full length. Here we show that, unlike the Icelandic Rise, peridotites are extensively exposed high on the rise, revealing that the crust is generally thin, and often missing, over a rifted rise. Therefore the Marion Rise must be largely an isostatic response to ancient melting events that created low-density depleted mantle beneath the Southwest Indian Ridge rather than thickened crust or a large thermal anomaly. The origin of this depleted mantle is probably the mantle emplaced into the African asthenosphere during the Karoo and Madagascar flood basalt events.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Physiographic and geoid maps of the SWIR with sample locations, and a map of the Icelandic rise for comparison.
Figure 2: Lithologic proportions by weight for SWIR dredges compiled from Supplementary Table 1 with proportions for the MAR Atlantis massif.
Figure 3: Bathymetric map of the 53° E ridge amagmatic segment with sample locations and contents.
Figure 4: Cartoon looking north from the Antarctic plate across the SWIR, showing the inferred crustal architecture along the Marion Rise.

References

  1. 1

    Morgan, W. J. Deep mantle convection plumes and plate motions. Am. Assoc. Petrol. Geol. Bull. 56, 203–213 (1972)

    Google Scholar 

  2. 2

    Kincaid, C., Schilling, J.-G. & Gable, C. The dynamics of off-axis plume-ridge interaction in the uppermost mantle. Earth Planet. Sci. Lett. 137, 29–43 (1996)

    ADS  Google Scholar 

  3. 3

    Weir, R. W. et al. Crustal structure of the northern Reykjanes Ridge and Reykjanes Peninsula, southwest Iceland. J. Geophys. Res. 106, 6347–6368 (2001)

    ADS  Google Scholar 

  4. 4

    Ito, G. & Behn, M. D. Magmatic and tectonic extension at mid-ocean ridges: 2. Origin of axial morphology. Geochem. Geophys. Geosyst. 9 Q09O12 http://dx.doi.org/10.1029/2008GC001970 (2008)

    Google Scholar 

  5. 5

    Wang, T., Lin, J., Tucholke, B. & Chen, Y. J. Crustal thickness anomalies in the North Atlantic Ocean basin from gravity analysis. Geochem. Geophys. Geosyst. 12 Q0AE02 http://dx.doi.org/10.1029/2010GC003402 (2011)

    Google Scholar 

  6. 6

    Canales, J. P., Ito, G., Detrick, R. S. & Sinton, J. Crustal thickness along the western Galapagos Spreading Center and the compensation of the Galapagos hotspot swell. Earth Planet. Sci. Lett. 203 311–327 http://dx.doi.org/10.1016/S0012-821X(02)00843-9 (2002)

    ADS  CAS  Google Scholar 

  7. 7

    Cannat, M., Rommevaux-Jestin, C., Sauter, D., Deplus, C. & Mendel, V. Formation of the axial relief at the very slow spreading Southwest Indian Ridge (49° to 69°E). J. Geophys. Res. 104, 22825–22843 (1999)

    ADS  Google Scholar 

  8. 8

    Dick, H. J. B., Fisher, R. L. & Bryan, W. B. Mineralogic variability of the uppermost mantle along mid-ocean ridges. Earth Planet. Sci. Lett. 69, 88–106 (1984)

    ADS  CAS  Google Scholar 

  9. 9

    Georgen, J. E., Lin, J. & Dick, H. J. B. Models of mantle upwelling beneath the Southwest Indian Ridge: the effects of ridge-transform geometry on magma supply at an ultra-slow spreading ridge. Eos 79, abstr. 854 (1998)

    Google Scholar 

  10. 10

    Niu, Y. & O'Hara, M. J. Global correlations of ocean ridge basalt chemistry with axial depth: a new perspective. J. Petrol. 49, 633–664 (2008)

    ADS  CAS  Google Scholar 

  11. 11

    O'Hara, M. J. Is there an Icelandic mantle plume? Nature 253, 708–710 (1975)

    ADS  CAS  Google Scholar 

  12. 12

    Presnall, D. C. & Helsley, C. E. Diapirism of depleted peridotite—a model for the origin of hot spots. Phys. Earth Planet. Inter. 29, 148–160 (1982)

    ADS  CAS  Google Scholar 

  13. 13

    Muller, M. R., Minshull, T. A. & White, R. S. Segmentation and melt supply at the Southwest Indian Ridge. Geology 27, 867–870 (1999)

    ADS  Google Scholar 

  14. 14

    Zhang, T., Lin, J. & Gao, J. Y. Interactions between hotspots and the Southwest Indian Ridge during the last 90 Ma: implications on the formation of oceanic plateaus and intra-plate seamounts. Sci. China Earth Sci. 54 http://dx.doi.org/10.1007/s11430-011-4219-9 (2011)

  15. 15

    Muller, M. R., Robinson, C. J., Minshull, T. A., White, R. S. & Bickle, M. J. Thin crust beneath ocean drilling program borehole 735B at the Southwest Indian Ridge? Earth Planet. Sci. Lett. 148, 93–107 (1997)

    ADS  CAS  Google Scholar 

  16. 16

    Cannat, M. et al. Modes of seafloor generation at a melt-poor ultraslow-spreading ridge. Geology 34, 605–608 (2006)

    ADS  Google Scholar 

  17. 17

    Jokat, W. et al. Geophysical evidence for reduced melt production on the super-slow Gakkel Ridge (Arctic Ocean). Nature 423, 962–965 (2003)

    ADS  CAS  PubMed  Google Scholar 

  18. 18

    Dick, H. J. B. et al. A long in-situ section of the lower ocean crust: results of ODP Leg 176 drilling at the Southwest Indian Ridge. Earth Planet. Sci. 179, 31–51 (2000)

    ADS  CAS  Google Scholar 

  19. 19

    Dick, H. J. B., Tivey, M. A. & Tucholke, B. E. Plutonic foundation of a slow-spreading ridge segment: oceanic core complex at Kane Megamullion, 23°30'N, 45°20'W. Geochem. Geophys. Geosyst. 9 44 http://dx.doi.org/10.1029/2007GC001645 (2008)

    Google Scholar 

  20. 20

    Klein, E. M. & Langmuir, C. H. Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. J. Geophys. Res. 92, 8089–8115 (1987)

    ADS  CAS  Google Scholar 

  21. 21

    Patriat, P. & Segoufin, J. Reconstruction of the Central Indian Ocean. Tectonophysics 155, 211–234 (1988)

    ADS  Google Scholar 

  22. 22

    Sclater, J. G., Grindlay, N. R., Madsen, J. A. & Rommevaux-Jestin, C. Tectonic interpretation of the Andrew Bain transform fault: Southwest Indian Ocean. Geochem. Geophys. Geosyst. 6 http://dx.doi.org/10.1029/2005GC000951 (2005)

  23. 23

    Duncan, R. A. Hot spots in the southern oceans—an absolute frame of reference for the motion of the Gondwana continents. Tectonophysics 74, 29–42 (1981)

    ADS  Google Scholar 

  24. 24

    Georgen, J. E., Lin, J. & Dick, H. J. B. Evidence from gravity anomalies for interactions of the Marion and Bouvet hotspots with the Southwest Indian Ridge: effect of transform offsets. Earth Planet. Sci. Lett. 187, 283–300 (2001)

    ADS  CAS  Google Scholar 

  25. 25

    Dick, H. J. B., Lin, J. & Schouten, H. An ultraslow-spreading class of ocean ridge. Nature 426, 405–412 (2003)

    ADS  CAS  PubMed  Google Scholar 

  26. 26

    Fisher, R. L. & Dick, H. J. B. Natland, J. & Meyer, P. S. Mafic/ultramafic suites of the slowly spreading Southwest Indian Ridge: PROTEA Exploration of the Antarctic Plate Boundary, 24°E - 47°E. Ophioliti 11, 147–178 (1986)

    Google Scholar 

  27. 27

    Le Roex, A. P., Dick, H. J. B. & Fisher, R. L. Petrology and geochemistry of MORB from 25°E to 46°E along the Southwest Indian Ridge: evidence for contrasting styles of mantle enrichment. J. Petrol. 30, 947–986 (1989)

    ADS  CAS  Google Scholar 

  28. 28

    Dick, H. J. et al. How variable slow-spread ocean crust. Eos 84, abstr. #V22F-01. (2003)

  29. 29

    Dick, H. J. B. in Magmatism in the Ocean Basins (eds Saunders, A. D. & Norry, M. J. ) 71–105 (Geological Society Special Publication No. 42, 1989)

    Google Scholar 

  30. 30

    Jaroslow, G. E., Hirth, G. & Dick, H. J. B. Abyssal peridotite mylonites: implications for grain-size sensitive flow and strain localization in the oceanic lithosphere. Tectonophysics 256, 17–37 (1996)

    ADS  CAS  Google Scholar 

  31. 31

    Ildefonse, B. et al. Oceanic core complexes and crustal accretion at slow-spreading ridges. Geology 35, 623–626 (2007)

    ADS  Google Scholar 

  32. 32

    Hellebrand, E., Snow, J. E., Dick, H. J. B. & Hofmann, H. Coupled major and trace-element indicators in mid-ocean ridge peridotites. Nature 410, 677–681 (2001)

    ADS  CAS  PubMed  Google Scholar 

  33. 33

    Sun, S.-s. Chemical composition and origin of the Earth's primitive mantle. Geochim. Cosmochim. Acta 46, 179–192 (1982)

    ADS  CAS  Google Scholar 

  34. 34

    Dick, H. J., Tivey, M. A., Tucholke, B. E. & Cheadle, M. J. The plutonic foundation of a MAR ridge spreading segment: the Kane Oceanic Core Complex. Eos 86, abstr. T33G–02. (2005)

  35. 35

    Xu, M., Canales, J. P., Tucholke, B. E. & DuBois, D. L. Heterogeneous seismic velocity structure of the upper lithosphere at Kane oceanic core complex, Mid-Atlantic Ridge. Geochem. Geophys. Geosyst. 10 http://dx.doi.org/10.1029/2009GC002586 (2009)

  36. 36

    Kelemen, P. B. et al. Drilling mantle peridotite along the Mid-Atlantic Ridge from 14° to 16°N. Proc. ODP Init. Rep. 209, (Ocean Drilling Program, 2004)

    Google Scholar 

  37. 37

    Cannat, M. et al. Ultramafic and gabbroic exposures at the Mid-Atlantic Ridge: geologic mapping in the 15°N region. Tectonophysics 279, 193–213 (1997)

    ADS  Google Scholar 

  38. 38

    Blackman, D. K. et al. Proceedings of the Integrated ODP 304/305 (Integrated Ocean Drilling Program Management International, http://dx.doi.org/10.2204/iodp.proc.304305.2006 (2006)

  39. 39

    Morishita, T. et al. Igneous, alteration and exhumation processes recorded in abyssal peridotites and related fault rocks from an oceanic core complex along the Central Indian Ridge. J. Petrol. 50, 1299–1325 (2009)

    ADS  CAS  Google Scholar 

  40. 40

    Teagle, D. A. et al. Drilling a complete in situ section of upper oceanic crust formed at a superfast spreading rate: hole 1256D. Eos 87 (52), abstr. B31B–1090. (2006)

  41. 41

    Cannat, M., Sauter, D., Escartin, J., Lavier, L. & Picazo, S. Oceanic corrugated surfaces and the strength of the axial lithosphere at slow spreading ridges. Earth Planet. Sci. Lett. 288, 174–183 (2009)

    ADS  CAS  Google Scholar 

  42. 42

    Jordan, T. H. in The Mantle Sample: Inclusions in Kimberlites and Other Volcanics (Proceedings of the Second International Kimberlite Conference) (eds Boyd, F. R. & Meyer, H. O. A. ) Vol. 2, 1–14 (American Geophysical Union, 1979)

    Google Scholar 

  43. 43

    Cadio, C., Ballmer, M. D., Panet, I., Diament, M. & Ribe, N. New constraints on the origin of the Hawaiian swell from wavelet analysis of the geoid to topography ratio. Earth Planet. Sci. Lett. 359–360 40–54 http://dx.doi.org/10.1016/j.epsl.2012.10.006 (2012)

    ADS  Google Scholar 

  44. 44

    Ito, G., Shen, Y., Hirth, G. & Wolfe, C. J. Mantle flow, melting, and dehydration of the Iceland mantle plume. Earth Planet. Sci. Lett. 165, 81–96 (1999)

    ADS  CAS  Google Scholar 

  45. 45

    Detrick, R. S., Needham, H. D. & Renard, V. Gravity anomalies and crustal thickness variations along the Mid-Atlantic Ridge between 33°N and 40°N. J. Geophys. Res. 100, 3767–3787 (1995)

    ADS  Google Scholar 

  46. 46

    Canales, J. P., Detrick, R. S., Lin, J., Collins, J. A. & Toomey, D. R. Crustal and upper mantle seismic structure beneath the rift mountains and across a non-transform offset at the Mid-Atlantic Ridge. J. Geophys. Res. 105, 2699–2720 (2000)

    ADS  Google Scholar 

  47. 47

    Karson, J. A. et al. Detachment shear zone of the Atlantis Massif core complex, Mid-Atlantic Ridge, 30°N. Geochem. Geophys. Geosyst. 7,. Q06016 http://dx.doi.org/10.1029/2005GC001109 (2006)

    ADS  Google Scholar 

  48. 48

    Georgen, J. E. & Lin, J. Plume-transform interactions at ultra-slow spreading rates: Implications for the Southwest Indian Ridge. Geochem. Geophys. Geosyst. 4 (9). 9106 http://dx.doi.org/10.1029/2003GC000542 (2003)

    ADS  Google Scholar 

  49. 49

    Dick, H. J., Lin, J., Michael, P. J., Schouten, H. & Snow, J. E. Ultra-slow-spreading—a new class of ocean ridge. Eos 83, abstr. T52E-05. (2002)

  50. 50

    Dick, H. J. B., Arai, S., Hirth, G. & John, B. J. KROO-06 Scientific Party. A subhorizontal cross-section through the crust mantle boundary at the SW Indian Ridge. Geophys. Res. Abstr. 3, 794 (2001)

    Google Scholar 

  51. 51

    Bougault, H. & Cande, S. C. 1. Background, objectives, and summary of principal results: Deep Sea Drilling Sites 556-564. Init. Rep. DSDP 82, 5–16 (1985)

    CAS  Google Scholar 

  52. 52

    Aumento, F. & Melson, W. G. Initial Reports of the Deep Sea Drilling Project Vol. 37, 1008 (US Government Printing Office, 1977)

    Google Scholar 

  53. 53

    Dick, H. J. B., Bryan, W. B. & Thompson, G. Low-angle faulting and steady-state emplacement of plutonic rocks at ridge-transform intersections. Eos 62, 406 (1981)

    Google Scholar 

  54. 54

    Tucholke, B. E. & Lin, J. A geological model for the structure of ridge segments in slow spreading ocean crust. J. Geophys. Res. 99, 11937–11958 (1994)

    ADS  Google Scholar 

  55. 55

    Cann, J. R. et al. Corrugated slip surfaces formed at ridge–transform intersections on the Mid-Atlantic Ridge. Nature 385, 329–332 (1997)

    ADS  Google Scholar 

  56. 56

    Smith, D. K., Cann, J. R. & Escartin, J. Widespread active detachment faulting and core complex formation near 13°N on the Mid-Atlantic Ridge. Nature 442, 440–443 (2006)

    ADS  CAS  PubMed  Google Scholar 

  57. 57

    Escartín, J. et al. Central role of detachment faults in accretion of slow-spreading oceanic lithosphere. Nature 455, 790–794 (2008)

    ADS  PubMed  Google Scholar 

  58. 58

    Michael, P. J. et al. Magmatic and amagmatic seafloor spreading at the slowest mid-ocean ridge: Gakkel Ridge, Arctic Ocean. Nature 423, 956–961 (2003)

    ADS  CAS  PubMed  Google Scholar 

  59. 59

    Sauter, D. et al. Focused magmatism versus amagmatic spreading along the ultra-slow spreading Southwest Indian Ridge: evidence from TOBI side scan sonar imagery. Geochem. Geophys. Geosyst. 5 http://dx.doi.org/10.1029/2004GC000738 (2004)

    Google Scholar 

  60. 60

    MacLeod, C. J. et al. Life cycle of oceanic core complexes. Earth Planet. Sci. Lett. 287, 333–344 (2009)

    ADS  CAS  Google Scholar 

  61. 61

    Schroeder, T. et al. Nonvolcanic seafloor spreading and corner-flow rotation accommodated by extensional faulting at 15 N on the Mid-Atlantic Ridge: a structural synthesis of ODP Leg 209. Geochem. Geophys. Geosyst. 8 http://dx.doi.org/10.1029/2006GC001567 (2007)

  62. 62

    Standish, J. J., Dick, H. J. B., Michael, P. J., Melson, W. G. & O'Hearn, T. MORB generation beneath the ultraslow-spreading Southwest Indian Ridge (9°-25°E): major element chemistry and the importance of process versus source. Geochem. Geophys. Geosyst. 9 Q05004 http://dx.doi.org/10.1029/2008GC001959 (2008)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Chinese National Key Basic Research Program (2012CB417300), China Ocean Mineral Resources Research and Development Association, and the US National Science Foundation (grant OCE-0526905). We thank the crew and scientists of RV Dayang Yihao Cruise 21. M. Sulanowska provided technical support. Z. Chen and Y. Liu analysed chrome spinels for us at the Guangzhou Institute of Geochemistry, Chinese Academy of Sciences. A glass sample from 53° E was analysed by F. Ji at the State Key Laboratory for Mineral Deposits Research, Nanjing University. We thank the Core and Rock Storage Facility of the Woods Hole Oceanographic Institution for curatorial support and access to samples. D. Sauter, R. Fisher and E. Bonatti provided additional unpublished sample descriptions and locations for the eastern and western SWIR. A review by Y. Niu encouraged us to provide more appropriate measurements of ridge depth and directed us to several important papers, greatly benefiting the manuscript and its conclusions.

Author information

Affiliations

Authors

Contributions

This article represents the first report of results of a survey during Cruise 21 Leg 5 of the RV Dayang Yihao directed by H.Z., who also had additional analytical work done at his institution. H.J.B.D. collected the bulk of the sample data over a period of 35 years. Both authors interpreted the results, with H.J.B.D. primarily responsible for the written text.

Corresponding authors

Correspondence to Huaiyang Zhou or Henry J. B. Dick.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-3 and Supplementary Tables 2-3 (see separate excel file for Supplementary Table 1). (PDF 8165 kb)

Supplementary Tables

This file contains Supplementary Table 1. (XLS 238 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhou, H., Dick, H. Thin crust as evidence for depleted mantle supporting the Marion Rise. Nature 494, 195–200 (2013). https://doi.org/10.1038/nature11842

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing