Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Oceanographic controls on the diversity and extinction of planktonic foraminifera

Subjects

Abstract

Understanding the links between long-term biological evolution, the ocean–atmosphere system and plate tectonics is a central goal of Earth science. Although environmental perturbations of many different kinds are known to have affected long-term biological evolution, particularly during major mass extinction events1,2, the relative importance of physical environmental factors versus biological interactions in governing rates of extinction and origination through geological time remains unknown2. Here we use macrostratigraphic data from the Atlantic Ocean basin to show that changes in global species diversity and rates of extinction among planktonic foraminifera have been linked to tectonically and climatically forced changes in ocean circulation and chemistry from the Jurassic period to the present. Transient environmental perturbations, such as those that occurred after the asteroid impact at the end of the Cretaceous period1 approximately 66 million years ago, and the Eocene/Oligocene greenhouse–icehouse transition3,4 approximately 34 million years ago, are superimposed on this general long-term relationship. Rates of species origination, by contrast, are not correlated with corresponding macrostratigraphic quantities, indicating that physiochemical changes in the ocean–atmosphere system affect evolution principally by driving the synchronous extinction of lineages that originated owing to more protracted and complex interactions between biological and environmental factors.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Atlantic Ocean basin lithosphere ages and locations of 73 sampled drilling sites.
Figure 2: Macrostratigraphy of the Atlantic Ocean basin.
Figure 3: Macrostratigraphy of the Atlantic Ocean basin and global range through diversity of planktonic foraminifera.

References

  1. Schulte, P. et al. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science. 327, 1214–1218 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Benton, M. J. The Red Queen and the Court Jester: species diversity and the role of biotic and abiotic factors through time. Science. 323, 728–732 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Zachos, J. C., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science. 292, 686–693 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Liu, Z. et al. Global cooling during the Eocene-Oligocene climate transition. Science. 323, 1187–1190 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Vincent, E. & Berger, W. H. in The Oceanic Lithosphere (ed. Emiliani, C.) 1025–1119 (Wiley, 1981)

    Google Scholar 

  6. Sverdrup, H. U., Johnson, M. W. & Fleming, R. H. The Oceans: Their Physics, Chemistry, and General Biology (Prentice-Hall, 1942)

    Google Scholar 

  7. Schiebel, R. Planktonic foraminiferal sedimentation and the marine calcite budget. Glob. Biogeochem. Cycles. 16, 1065 (2002)

    Article  ADS  CAS  Google Scholar 

  8. D’Hondt, S. & Zachos, J. C. Cretaceous foraminifera and the evolutionary history of planktonic photosymbiosis. Paleobiology. 24, 512–523 (1998)

    Article  Google Scholar 

  9. Hallock, P., Premoli-Silva, I. & Boersma, A. Similarities between planktonic and larger foraminiferal evolutionary trends through Paleogene paleoceanographic changes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 83, 49–64 (1991)

    Article  Google Scholar 

  10. Norris, R. D. Pelagic species diversity, biogeography, and evolution. Paleobiology. 26, 236–258 (2000)

    Article  Google Scholar 

  11. Lipps, J. H. Plankton evolution. Evolution. 24, 1–22 (1970)

    Article  PubMed  Google Scholar 

  12. Cifelli, R. Radiation of Cenozoic planktonic foraminifera. Syst. Zool. 18, 154–168 (1969)

    Article  Google Scholar 

  13. Berggren, W. A. & Hollister, C. D. Plate tectonics and paleocirculation—commotion in the ocean. Tectonophysics. 38, 11–48 (1977)

    Article  ADS  Google Scholar 

  14. Van Andel, T. H. Mesozoic/Cenozoic calcite compensation depth and the global distribution of calcareous sediments. Earth Planet. Sci. Lett. 26, 187–194 (1975)

    Article  ADS  Google Scholar 

  15. Moore, T. C., Jr, van Andel, T. H., Sancetta, C. & Pisias, N. Cenozoic hiatuses in pelagic sediments: marine plankton and sediments. Micropaleontol. Sp. Pub. 3, 113–138 (1978)

    Article  Google Scholar 

  16. Keller, G. et al. Global distribution of late Paleogene hiatuses. Geology. 15, 199–203 (1987)

    Article  ADS  Google Scholar 

  17. Miller, K. G. et al. The Phanerozoic record of global sea-level change. Science. 310, 1293–1298 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Kauffman, E. G. & Caldwell, W. G. E. Evolution of the Western Interior Basin 1–30 (Geological Association of Canada Special Paper 39, 1993)

    Google Scholar 

  19. Milliman, J. D. in Recent Sedimentary Carbonates (eds Milliman, J. D., Müller, G. & Förstner, U.) Ch. 8 (Springer, 1974)

    Book  Google Scholar 

  20. Thierstein, H. R. in Deep Sea Drilling Results in the Atlantic Ocean: Continental Margins and Paleoenvironment (eds Talwani, M., Hay, W. W. & Ryan, W. B. F.) 249–274 (American Geophysical Union, 1979)

    Book  Google Scholar 

  21. D’Hondt, S., Donaghay, P., Zachos, J. C., Luttenberg, D. & Lindinger, M. Organic carbon fluxes and ecological recovery from the Cretaceous-Tertiary mass extinction. Science. 282, 276–279 (1998)

    Article  ADS  PubMed  Google Scholar 

  22. Lyle, M., Dadey, K. A. & Farrell, J. W. The late Miocene (11–8 Ma) eastern Pacific carbonate crash: evidence for reorganization of deep-water circulation by the closure of the Panama Gateway. Proc. Ocean Drill. Program Sci. Results. 138, 821–838 (1995)

    Google Scholar 

  23. Norris, R. D., Klaus, A. & Kroon, D. in Western North Atlantic Paleogene and Cretaceous Paleoceanography (eds Kroon, D., Norris, R. D. & Klaus, A.) 23–48 (Geological Society of London, 2001)

    Google Scholar 

  24. Hannisdal, B. & Peters, S. E. Phanerozoic Earth system evolution and marine biodiversity. Science. 334, 1121–1124 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Haq, B. U., Premoli-Silva, I. & Lohmann, G. P. Calcareous plankton paleobiogeographic evidence for major climatic fluctuations in the Early Cenozoic Atlantic Ocean. J. Geophys. Res. 82, 3861–3876 (1977)

    Article  ADS  Google Scholar 

  26. Thunell, R. C. & Corliss, B. H. in Terminal Eocene Events (eds Pomerol, C. & Premoli-Silva, I.) 363–380 (Elsevier, 1986)

    Book  Google Scholar 

  27. Darling, K. F., Wade, C. M., Kroon, D., Brown, L. & Bijma, J. The diversity and distribution of modern planktonic foraminiferal SSU rRNA genotypes and their potential as tracers of present and past ocean circulation. Paleoceanography. 14, 3–12 (1999)

    Article  ADS  Google Scholar 

  28. Darling, K. F. et al. Molecular evidence for genetic mixing of Arctic and Antarctic subpolar populations of planktonic foraminifers. Nature. 405, 43–47 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Peters, S. E. Macrostratigraphy of North America. J. Geol. 114, 391–412 (2006)

    Article  ADS  Google Scholar 

  30. Hannisdal, B. & Peters, S. E. On the relationship between macrostratigraphy and geological processes: quantitative information capture and sampling robustness. J. Geol. 118, 111–130 (2010)

    Article  ADS  CAS  Google Scholar 

  31. Huber, B. T. et al. Mesozoic Planktonic Foraminiferal Taxonomic Dictionary. http://chronos.org (2006)

  32. Stewart, D. R. M. & Pearson, P. N. PLANKRANGE: A Database of Planktonic Foraminiferal Ranges. http://palaeo.gly.bris.ac.uk/Data/plankrange.html (2000)

  33. Olsson, R. K. et al. Atlas of Paleocene Planktonic Foraminifera (Smithsonian Contributions to Paleobiology, 1999)

    Book  Google Scholar 

  34. Pearson, P. N. et al. Atlas of Eocene Planktonic Foraminifera (Cushman Foundation, 2006)

    Google Scholar 

  35. Kennett, J. P. & Srinivasan, M. S. Neogene Planktonic Foraminifera (Hutchinson Ross, 1983)

    Google Scholar 

  36. Saito, T., Thompson, P. R. & Breger, D. Systematic Index of Recent and Pleistocene Planktonic Foraminfera (Univ. of Tokyo Press, 1981)

    Google Scholar 

  37. Bolli, H. M., Saunders, J. B. & Perch-Nielsen, K. Plankton Stratigraphy (Cambridge Univ. Press, 1989)

    Google Scholar 

  38. Georgescu, M. D. A new planktonic foraminifer (family Hedbergellidae Loeblich and Tappan, 1961) from the Lower Campanian sediments of the Falkland Plateau, South Atlantic Ocean (DSDP Site 511). J. Foraminiferal Res. 38, 157–161 (2008)

    Article  Google Scholar 

  39. Ogg, J. G., Agterberg, F. P. & Gradstein, F. M. in A Geologic Time Scale (eds Gradstein, F. M.,Ogg, J. G. & Smith, A. G.) 344–383 (Cambridge Univ. Press, 2004)

    Google Scholar 

  40. Purvis, A. Phylogenetic approaches to the study of extinction. Ecol. Evol. Syst. 39, 301–319 (2008)

    Article  Google Scholar 

  41. Adrain, J. & Westrop, S. R. An empirical assessment of taxic paleobiology. Science. 289, 110–112 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Peters, S. E. Genus extinction, origination, and the durations of sedimentary hiatuses. Paleobiology. 32, 387–407 (2006)

    Article  Google Scholar 

  43. Müller, R. D., Sdrolias, M., Gaina, C. & Roest, W. R. Age, spreading rates and spreading symmetry of the world’s ocean crust. Geochem. Geophys. Geosyst. 9, Q04006 (2008)

    Article  ADS  Google Scholar 

  44. Prothero, D. R. & Lazarus, D. B. Planktonic microfossils and the recognition of ancestors. Syst. Zool. 29, 119–129 (1980)

    Article  Google Scholar 

  45. Parker, F. L. Planktonic foraminiferal species in Pacific sediments. Micropaleontology. 8, 219–254 (1962)

    Article  Google Scholar 

  46. Bé, A. W. H. & Tolderlund, D. S. in The Micropaleontology of Oceans (eds Funnell, B. M & Riedel, W. R.) 1025–1119 (Cambridge Univ. Press, 1971)

    Google Scholar 

  47. CLIMAP Project Team Members. The surface of the ice-age Earth. Science. 191, 1131–1137 (1976)

  48. Bé, A. W. H. in Oceanic Micropaleontology (ed. Ramsay, A. T. S.) Vol. 1 1–100 (Academic, 1977)

    Google Scholar 

  49. Hemleben, C., Spindler, M. & Anderson, O. R. Modern Planktonic Foraminifera (Springer, 1989)

    Book  Google Scholar 

  50. CLIMAP Project Members. CLIMAP 18K Database (NOAA/NGDC Paleoclimatology Program, 1994)

  51. Foote, M. Origination and extinction through the Phanerozoic: a new approach. J. Geol. 111, 125–148 (2003)

    Article  ADS  Google Scholar 

  52. Foote, M. Pulsed origination and extinction in the marine realm. Paleobiology. 31, 6–20 (2005)

    Article  Google Scholar 

  53. Peters, S. E. Geologic constraints on the macroevolutionary history of marine animals. Proc. Natl Acad. Sci. USA. 102, 12326–12331 (2005)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. Holland, S. M. The stratigraphic distribution of fossils. Paleobiology. 21, 92–109 (1995)

    Article  Google Scholar 

  55. Holland, S. M. The quality of the fossil record: a sequence stratigraphic perspective. Paleobiology. 26, 148–168 (2000)

    Article  Google Scholar 

  56. Peters, S. E. & Heim, N. A. Stratigraphic distribution of marine fossils in North America. Geology. 39, 259–262 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank M. Foote and B. Wilkinson for feedback on our analyses and this manuscript, and N. A. Heim for help in drafting the maps herein. This work was partially supported by National Science Foundation Division of Earth Sciences (NSF EAR) EAR 0819931 to S.E.P. and NSF EAR 0628719 subcontract to D.C.K.

Author information

Authors and Affiliations

Authors

Contributions

All authors compiled Macrostrat data and contributed to development of the manuscript; D.C.K. and A.J.F. compiled the planktonic foraminifera species range data.

Corresponding author

Correspondence to Shanan E. Peters.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-6 and Supplementary Tables 1-4. (PDF 4124 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Peters, S., Kelly, D. & Fraass, A. Oceanographic controls on the diversity and extinction of planktonic foraminifera. Nature 493, 398–401 (2013). https://doi.org/10.1038/nature11815

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11815

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing