Sustainable bioenergy production from marginal lands in the US Midwest


Legislation on biofuels production in the USA1 and Europe2,3 is directing food crops towards the production of grain-based ethanol2,3, which can have detrimental consequences for soil carbon sequestration4, nitrous oxide emissions5, nitrate pollution6, biodiversity7 and human health8. An alternative is to grow lignocellulosic (cellulosic) crops on ‘marginal’ lands9. Cellulosic feedstocks can have positive environmental outcomes10,11 and could make up a substantial proportion of future energy portfolios12,13. However, the availability of marginal lands for cellulosic feedstock production, and the resulting greenhouse gas (GHG) emissions, remains uncertain. Here we evaluate the potential for marginal lands in ten Midwestern US states to produce sizeable amounts of biomass and concurrently mitigate GHG emissions. In a comparative assessment of six alternative cropping systems over 20 years, we found that successional herbaceous vegetation, once well established, has a direct GHG emissions mitigation capacity that rivals that of purpose-grown crops (−851 ± 46 grams of CO2 equivalent emissions per square metre per year (gCO2e m−2 yr−1)). If fertilized, these communities have the capacity to produce about 63 ± 5 gigajoules of ethanol energy per hectare per year. By contrast, an adjacent, no-till corn–soybean–wheat rotation produces on average 41 ± 1 gigajoules of biofuel energy per hectare per year and has a net direct mitigation capacity of −397 ± 32 gCO2e m−2 yr−1; a continuous corn rotation would probably produce about 62 ± 7 gigajoules of biofuel energy per hectare per year, with 13% less mitigation. We also perform quantitative modelling of successional vegetation on marginal lands in the region at a resolution of 0.4 hectares, constrained by the requirement that each modelled location be within 80 kilometres of a potential biorefinery. Our results suggest that such vegetation could produce about 21 gigalitres of ethanol per year from around 11 million hectares, or approximately 25 per cent of the 2022 target for cellulosic biofuel mandated by the US Energy Independence and Security Act of 2007, with no initial carbon debt nor the indirect land-use costs associated with food-based biofuels. Other regional-scale aspects of biofuel sustainability2, such as water quality11,14 and biodiversity15, await future study.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: GHG balances of alternative cropping systems in southwest Michigan for biofuel feedstock production.
Figure 2: Above-ground biomass production of the successional system between 1989 and 2009 in 1-ha treatment plots.
Figure 3: Potential biomass collection areas for cellulosic biorefineries within ten US midwest states.


  1. 1

    US 110th Congress. Energy Independence and Security Act of 2007. Public Law 110–140; (2007)

  2. 2

    Robertson, G. P. et al. Sustainable biofuels redux. Science 322, 49–50 (2008)

    CAS  Article  Google Scholar 

  3. 3

    Fischer, G. et al. Biofuel production potentials in Europe: sustainable use of cultivated land and pastures, part II. Land use scenarios. Biomass Bioenergy 34, 173–187 (2010)

    Article  Google Scholar 

  4. 4

    Fargione, J., Hill, J., Tilman, D., Polasky, S. & Hawthorne, P. Land clearing and the biofuel carbon debt. Science 319, 1235–1238 (2008)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Crutzen, P. J., Mosier, A. R., Smith, K. A. & Winiwarter, W. N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos. Chem. Phys. 8, 389–395 (2008)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Donner, S. D. & Kucharik, C. J. Corn-based ethanol production compromises goal of reducing nitrogen export by the Mississippi River. Proc. Natl Acad. Sci. USA 105, 4513–4518 (2008)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Landis, D. A., Gardiner, M. M., van der Werf, W. & Swinton, S. M. Increasing corn for biofuel production reduces biocontrol services in agricultural landscapes. Proc. Natl Acad. Sci. USA 105, 20552–20557 (2008)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Hill, J. Polasky, S. Nelson, E., Tilman, D. & Huo, H. Climate change and health costs of air emissions from biofuels and gasoline. Proc. Natl Acad. Sci. USA 106, 2077–2082 (2009)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Tilman, D., Hill, J. & Lehman, C. Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 314, 1598–1600 (2006)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Meehan, T. D., Hurlbert, A. H. & Gratton, C. Bird communities in future bioenergy landscapes of the upper midwest. Proc. Natl Acad. Sci. USA 107, 18533–18538 (2010)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Robertson, G. P., Hamilton, S. K., Del Grosso, S. J. & Parton, W. J. The biogeochemistry of bioenergy landscapes: carbon, nitrogen, and water considerations. Ecol. Appl. 21, 1055–1067 (2011)

    Article  Google Scholar 

  12. 12

    Perlack, R. D. et al. US Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry. Report No. ORNL/TM-2011/224 (US DOE, 2011)

  13. 13

    Ohlrogge, J. et al. Driving on biomass. Science 324, 1019–1020 (2009)

    CAS  Article  Google Scholar 

  14. 14

    Dominguez-Faus, R., Powers, S. E., Burken, J. G. & Alvarez, P. J. The water footprint of biofuels: a drink or drive issue? Environ. Sci. Technol. 43, 3005–3010 (2009)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Webster, C. R., Flaspohler, D. J., Jackson, R. D., Meehan, T. D. & Gratton, C. Diversity, productivity and landscape-level effects in North American grasslands managed for biomass production. Biofuels 1, 451–461 (2010)

    Article  Google Scholar 

  16. 16

    Somerville, C., Youngs, H., Taylor, C., Davis, S. C. & Long, S. P. Feedstocks for lignocellulosic biofuels. Science 329, 790–792 (2010)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Searchinger, T. D. et al. Fixing a critical climate accounting error. Science 326, 527–528 (2009)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Plevin, R. J. & Kammen, D. M. in Encyclopedia of Biodiversity (ed. Levin, S. A. ) (Elsevier, in the press).

  19. 19

    Gelfand, I. et al. Carbon debt of Conservation Reserve Program (CRP) grasslands converted to bioenergy production. Proc. Natl Acad. Sci. USA 108, 13864–13869 (2011)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Robertson, G. P., Paul, E. A. & Harwood, R. R. Greenhouse gases in intensive agriculture: contributions of individual gases to the radiative forcing of the atmosphere. Science 289, 1922–1925 (2000)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Syswerda, S. P., Corbin, A. T., Mokma, D. L., Kravchenko, A. N. & Robertson, G. P. Agricultural management and soil carbon storage in surface vs. deep layers. Soil Sci. Soc. Am. J. 75, 92–101 (2011)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Stoffel, J. L., Gower, S. T., Forrester, J. A. & Mladenoff, D. J. Effects of winter selective tree harvest on soil microclimate and surface CO2 flux of a northern hardwood forest. For. Ecol. Manage. 259, 257–265 (2010)

    Article  Google Scholar 

  23. 23

    Kim, S. & Dale, B. E. Life cycle assessment of various cropping systems utilized for producing biofuels: bioethanol and biodiesel. Biomass Bioenergy 29, 426–439 (2005)

    Article  Google Scholar 

  24. 24

    Eranki, P. L. & Dale, B. E. Comparative life cycle assessment of centralized and distributed biomass processing systems combined with mixed feedstock landscapes. GCB Bioenergy 3, 427–438 (2011)

    Article  Google Scholar 

  25. 25

    Coleman, M. et al. Post-establishment fertilization of Minnesota hybrid poplar plantations. Biomass Bioenergy 30, 740–749 (2006)

    Article  Google Scholar 

  26. 26

    Kosola, K., Dickmann, D., Paul, E. & Parry, D. Repeated insect defoliation effects on growth, nitrogen acquisition, carbohydrates, and root demography of poplars. Oecologia 129, 65–74 (2001)

    ADS  Article  Google Scholar 

  27. 27

    Izaurralde, R. C., Williams, J. R., McGill, W. B., Rosenberg, N. J. & Jakas, M. C. Q. Simulating soil C dynamics with EPIC: model description and testing against long-term data. Ecol. Modell. 192, 362–384 (2006)

    Article  Google Scholar 

  28. 28

    Zhang, X. et al. An integrative modeling framework to evaluate the productivity and sustainability of biofuel crop production systems. GCB Bioenergy 2, 258–277 (2010)

    Article  Google Scholar 

  29. 29

    Soil. Survey Staff. Soil Survey Geographic Database. National Resources Conservation Service (USDA, 2011)

  30. 30

    Clark, C. M. et al. Environmental and plant community determinants of species loss following nitrogen enrichment. Ecol. Lett. 10, 596–607 (2007)

    Article  Google Scholar 

  31. 31

    Schmer, M. R., Vogel, K. P., Mitchell, R. B. & Perrin, R. K. Net energy of cellulosic ethanol from switchgrass. Proc. Natl Acad. Sci. USA 105, 464–469 (2008)

    ADS  CAS  Article  Google Scholar 

  32. 32

    Fornara, D. A. & Tilman, D. Ecological mechanisms associated with the positive diversity productivity relationship in an N-limited grassland. Ecology 90, 408–418 (2009)

    CAS  Article  Google Scholar 

  33. 33

    Forster, P. et al. in Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) 129–234 (Cambridge Univ. Press, 2007)

  34. 34

    West, T. O. & Marland, G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: comparing tillage practices in the United States. Agric. Ecosyst. Environ. 91, 217–232 (2002)

    Article  Google Scholar 

  35. 35

    Lal, R. Carbon emission from farm operations. Environ. Int. 30, 981–990 (2004)

    CAS  Article  Google Scholar 

  36. 36

    Stein, D. 2008-2009 Custom Machine and Work Rate Estimates. MSUE District Farm Business Management (2009)

  37. 37

    Syswerda, S. P., Basso, B., Hamilton, S. K., Tausig, J. B. & Robertson, G. P. Long-term nitrate loss along an agricultural intensity gradient in the Upper Midwest USA. Agric. Ecosyst. Environ. 149, 10–19 (2012)

    CAS  Article  Google Scholar 

  38. 38

    Huo, H., Wang, M., Bloyd, C. & Putsche, V. Life-cycle assessment of energy use and greenhouse gas emissions of soybean-derived biodiesel and renewable fuels. Environ. Sci. Technol. 43, 750–756 (2009)

    ADS  CAS  Article  Google Scholar 

  39. 39

    Sheehan, J. et al. Life Cycle Inventory of Biodiesel and Petroleum Diesel for Use in an Urban Bus. Report No. NREL/SR-580-24089 (USDA, 1998)

  40. 40

    Patzek, T. W. A first law thermodynamic analysis of biodiesel production from soybean. Bull. Sci. Technol. Soc. 29, 194–204 (2009)

    Article  Google Scholar 

  41. 41

    Farrell, A. E. et al. Ethanol can contribute to energy and environmental goals. Science 311, 506–508 (2006)

    ADS  CAS  Article  Google Scholar 

  42. 42

    Plevin, R. J. Modeling corn ethanol and climate: a critical comparison of the BESS and GREET models. J. Ind. Ecol. 13, 495–507 (2009)

    CAS  Article  Google Scholar 

  43. 43

    Nuez Ortín, W. G. & Yu, P. Nutrient variation and availability of wheat DDGS, corn DDGS and blend DDGS from bioethanol plants. J. Sci. Food Agric. 89, 1754–1761 (2009)

    Article  Google Scholar 

  44. 44

    Kim, S. & Dale, B. E. Life cycle assessment of various cropping systems utilized for producing biofuels: bioethanol and biodiesel. Biomass Bioenergy 29, 426–439 (2005)

    Article  Google Scholar 

  45. 45

    Oak Ridge National Laboratory. Bioenergy conversion factors. Library/Bioenergy conversion factors pdf (2011)

  46. 46

    Williams, J. R. in Computer Models of Watershed Hydrology (ed. Singh, V. P. ) 909–1000 (Water Research Publications, 1995)

    Google Scholar 

  47. 47

    Izaurralde, R. C. et al. Simulating soil C dynamics with EPIC: model description and testing against long-term data. Ecol. Modell. 192, 362–384 (2006)

    Article  Google Scholar 

  48. 48

    Zhang, X. et al. An integrative modeling framework to evaluate the productivity and sustainability of biofuel crop production systems. GCB Bioenergy 2, 258–277 (2010)

    Article  Google Scholar 

  49. 49

    Sinclair, T. R., Muchow, R. C. & Donald, L. S. Radiation use efficiency. Adv. Agron. 65, 215–265 (1999)

    Article  Google Scholar 

  50. 50

    Izaurralde, R. C., Rosenberg, N. J., Brown, R. A. & Thomson, A. M. Integrated assessment of Hadley Center (HadCM2) climate-change impacts on agricultural productivity and irrigation water supply in the conterminous United States: Part II. Regional agricultural production in 2030 and 2095. Agric. For. Meteorol. 117, 97–122 (2003)

    ADS  Article  Google Scholar 

  51. 51

    Tan, G. & Shibasaki, R. Global estimation of crop productivity and the impacts of global warming by GIS and EPIC integration. Ecol. Modell. 168, 357–370 (2003)

    Article  Google Scholar 

  52. 52

    Klingebiel, A. A. & Montgomery, P. H. Land-Capability Classification (USDA, 1961)

    Google Scholar 

  53. 53

    Farr, T. G. et al. The shuttle radar topography mission. Rev. Geophys. 45, RG2004 (2007)

    ADS  Article  Google Scholar 

  54. 54

    Mesinger, F. et al. North American regional reanalysis. Bull. Am. Meteorol. Soc. 87, 343–360 (2006)

    ADS  Article  Google Scholar 

  55. 55

    Johnson, D. M. & Mueller, R. The 2009 cropland data layer. Photogramm. Eng. Remote Sensing 76, 1201–1205 (2010)

    Google Scholar 

  56. 56

    Eggemeyer, K. D. et al. Ecophysiology of two native invasive woody species and two dominant warm-season grasses in the semiarid grasslands of the Nebraska sandhills. Int. J. Plant Sci. 167, 991–999 (2006)

    Article  Google Scholar 

  57. 57

    Tagil, S. & Jenness, J. GIS-Based automated landform classification and topographic, landcover and geologic attributes of landforms around the Yazoren Polje, Turkey. J. Appl. Sci. 8, 910–921 (2008)

    ADS  Article  Google Scholar 

  58. 58

    Bailey, C., Dyer, J. F. & Teeter, L. Assessing the rural development potential of lignocellulosic biofuels in Alabama. Biomass Bioenergy 35, 1408–1417 (2011)

    Article  Google Scholar 

Download references


We thank S. Bohm, K. A. Kahmark, I. Shcherbak, and S. VanderWulp for help with data assembly; C. McMinn, J. Simmons and many others for field and laboratory assistance; J. R. Williams for EPIC model advice; and D. H. Manowitz for programming and computational assistance. We are additionally indebted to B. Bond-Lamberty, B. E. Dale, V. H. Dale, J. D. Hill, W. M. Post and T. O. West for comments on an earlier version of the manuscript. Financial support for this work was provided by the US DOE Office of Science (DE-FC02-07ER64494, KP1601050) and Office of Energy Efficiency and Renewable Energy (DE-AC05-76RL01830, OBP 20469-19145), the US National Science Foundation LTER program (DEB 1027253), NASA (NNH08ZDA001N), and MSU AgBioResearch. EPIC simulations were performed on the PNNL Evergreen computer cluster, which is supported by the US DOE Office of Science (DE-AC05-76RL01830).

Author information




G.P.R., I.G. and R.C.I. designed the study. I.G., R.C.I., R.S. and X.Z. analysed data and wrote initial drafts of the manuscript. R.C.I., R.S. and X.Z. performed simulations. X.Z. designed the spatially explicit modelling system. K.L.G. designed and performed the fertilization study. I.G. and G.P.R. wrote the final version of the manuscript.

Corresponding author

Correspondence to Ilya Gelfand.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-6, Supplementary Tables 1-12, Supplementary Equations 1-8, Supplementary Methods and Supplementary References. (PDF 499 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gelfand, I., Sahajpal, R., Zhang, X. et al. Sustainable bioenergy production from marginal lands in the US Midwest. Nature 493, 514–517 (2013).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.