Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mitotic cell rounding accelerates epithelial invagination

Subjects

Abstract

Mitotic cells assume a spherical shape by increasing their surface tension and osmotic pressure by extensively reorganizing their interphase actin cytoskeleton into a cortical meshwork and their microtubules into the mitotic spindle1,2. Mitotic entry is known to interfere with tissue morphogenetic events that require cell-shape changes controlled by the interphase cytoskeleton, such as apical constriction3,4,5. However, here we show that mitosis plays an active role in the epithelial invagination of the Drosophila melanogaster tracheal placode. Invagination begins with a slow phase under the control of epidermal growth factor receptor (EGFR) signalling; in this process, the central apically constricted cells, which are surrounded by intercalating cells6,7, form a shallow pit. This slow phase is followed by a fast phase, in which the pit is rapidly depressed, accompanied by mitotic entry, which leads to the internalization of all the cells in the placode. We found that mitotic cell rounding, but not cell division, of the central cells in the placode is required to accelerate invagination, in conjunction with EGFR-induced myosin II contractility in the surrounding cells. We propose that mitotic cell rounding causes the epithelium to buckle under pressure and acts as a switch for morphogenetic transition at the appropriate time.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Two-step process of tracheal invagination.
Figure 2: Mitosis is required for the acceleration of invagination.
Figure 3: Mitotic cell rounding is sufficient for the fast transition.
Figure 4: Mitosis triggers invagination independent of EGF and FGF signalling.

References

  1. Théry, M. & Bornens, M. Get round and stiff for mitosis. HFSP J. 2, 65–71 (2008)

    Article  Google Scholar 

  2. Stewart, M. P. et al. Hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding. Nature 469, 226–230 (2011)

    Article  ADS  CAS  Google Scholar 

  3. Großhans, J. & Wieschaus, E. A genetic link between morphogenesis and cell division during formation of the ventral furrow in Drosophila . Cell 101, 523–531 (2000)

    Article  Google Scholar 

  4. Mata, J., Curado, S., Ephrussi, A. & Rørth, P. Tribbles coordinates mitosis and morphogenesis in Drosophila by regulating String/CDC25 proteolysis. Cell 101, 511–522 (2000)

    Article  CAS  Google Scholar 

  5. Seher, T. C. & Leptin, M. Tribbles, a cell-cycle brake that coordinates proliferation and morphogenesis during Drosophila gastrulation. Curr. Biol. 10, 623–629 (2000)

    Article  CAS  Google Scholar 

  6. Brodu, V. & Casanova, J. The RhoGAP crossveinless-c links trachealess and EGFR signaling to cell shape remodeling in Drosophila tracheal invagination. Genes Dev. 20, 1817–1828 (2006)

    Article  CAS  Google Scholar 

  7. Nishimura, M., Inoue, Y. & Hayashi, S. A wave of EGFR signaling determines cell alignment and intercalation in the Drosophila tracheal placode. Development 134, 4273–4282 (2007)

    Article  CAS  Google Scholar 

  8. Lecuit, T. & Lenne, P.-F. Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. Nature Rev. Mol. Cell Biol. 8, 633–644 (2007)

    Article  ADS  CAS  Google Scholar 

  9. Sawyer, J. M. et al. Apical constriction: a cell shape change that can drive morphogenesis. Dev. Biol. 341, 5–19 (2010)

    Article  CAS  Google Scholar 

  10. Escudero, L. M., Bischoff, M. & Freeman, M. Myosin II regulates complex cellular arrangement and epithelial architecture in Drosophila . Dev. Cell 13, 717–729 (2007)

    Article  CAS  Google Scholar 

  11. Corrigall, D., Walther, R. F., Rodriguez, L., Fichelson, P. & Pichaud, F. Hedgehog signaling is a principal inducer of Myosin-II-driven cell ingression in Drosophila epithelia. Dev. Cell 13, 730–742 (2007)

    Article  CAS  Google Scholar 

  12. Vincent, A., Blankenship, J. T. & Wieschaus, E. Integration of the head and trunk segmentation systems controls cephalic furrow formation in Drosophila . Development 124, 3747–3754 (1997)

    CAS  PubMed  Google Scholar 

  13. Wang, Y.-C., Khan, Z., Kaschube, M. & Wieschaus, E. F. Differential positioning of adherens junctions is associated with initiation of epithelial folding. Nature 484, 390–393 (2012)

    Article  ADS  CAS  Google Scholar 

  14. Ghabrial, A., Luschnig, S., Metzstein, M. M. & Krasnow, M. A. Branching morphogenesis of the Drosophila tracheal system. Annu. Rev. Cell Dev. Biol. 19, 623–647 (2003)

    Article  CAS  Google Scholar 

  15. Oda, H. & Tsukita, S. Real-time imaging of cell-cell adherens junctions reveals that Drosophila mesoderm invagination begins with two phases of apical constriction of cells. J. Cell Sci. 114, 493–501 (2001)

    CAS  PubMed  Google Scholar 

  16. Campos-Ortega, J. A. & Hartenstein, V. The Embryonic Development of Drosophila melanogaster (Springer, 1997)

    Google Scholar 

  17. Lehner, C. F. & O’Farrell, P. H. Expression and function of Drosophila cyclin a during embryonic cell cycle progression. Cell 56, 957–968 (1989)

    Article  CAS  Google Scholar 

  18. Garner, M., van Kreeveld, S. & Su, T. T. mei-41 and bub1 block mitosis at two distinct steps in response to incomplete DNA replication in Drosophila embryos. Curr. Biol. 11, 1595–1599 (2001)

    Article  CAS  Google Scholar 

  19. Klämbt, C., Glazer, L. & Shilo, B. Z. breathless, a Drosophila FGF receptor homolog, is essential for migration of tracheal and specific midline glial cells. Genes Dev. 6, 1668–1678 (1992)

    Article  Google Scholar 

  20. Sutherland, D., Samakovlis, C. & Krasnow, M. A. branchless encodes a Drosophila FGF homolog that controls tracheal cell migration and the pattern of branching. Cell 87, 1091–1101 (1996)

    Article  CAS  Google Scholar 

  21. Baker, J. & Garrod, D. Epithelial cells retain junctions during mitosis. J. Cell Sci. 104, 415–425 (1993)

    PubMed  Google Scholar 

  22. Meyer, E. J., Ikmi, A. & Gibson, M. C. Interkinetic nuclear migration is a broadly conserved feature of cell division in pseudostratified epithelia. Curr. Biol. 21, 485–491 (2011)

    Article  CAS  Google Scholar 

  23. Bunch, T. A. et al. Characterization of mutant alleles of myospheroid, the gene encoding the β subunit of the Drosophila PS integrins. Genetics 132, 519–528 (1992)

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Leptin, M. & Grunewald, B. Cell shape changes during gastrulation in Drosophila . Development 110, 73–84 (1990)

    CAS  PubMed  Google Scholar 

  25. Martin, A. C., Kaschube, M. & Wieschaus, E. F. Pulsed contractions of an actin–myosin network drive apical constriction. Nature 457, 495–499 (2009)

    Article  ADS  CAS  Google Scholar 

  26. Martin, A. C., Gelbart, M., Fernandez-Gonzalez, R., Kaschube, M. & Wieschaus, E. F. Integration of contractile forces during tissue invagination. J. Cell Biol. 188, 735–749 (2010)

    Article  CAS  Google Scholar 

  27. Kato, K. & Hayashi, S. Practical guide of live imaging for developmental biologists. Dev. Growth Differ. 50, 381–390 (2008)

    Article  Google Scholar 

  28. Haruta, T., Warrior, R., Yonemura, S. & Oda, H. The proximal half of the Drosophila E-cadherin extracellular region is dispensable for many cadherin-dependent events but required for ventral furrow formation. Genes Cells 15, 193–208 (2010)

    Article  CAS  Google Scholar 

  29. Pandey, R., Heidmann, S. & Lehner, C. F. Epithelial re-organization and dynamics of progression through mitosis in Drosophila separase complex mutants. J. Cell Sci. 118, 733–742 (2005)

    Article  CAS  Google Scholar 

  30. Wirtz-Peitz, F., Nishimura, T. & Knoblich, J. A. Linking cell cycle to asymmetric division: Aurora-A phosphorylates the par complex to regulate numb localization. Cell 135, 161–173 (2008)

    Article  CAS  Google Scholar 

  31. Kakihara, K., Shinmyozu, K., Kato, K., Wada, H. & Hayashi, S. Conversion of plasma membrane topology during epithelial tube connection requires Arf-like 3 small GTPase in Drosophila . Mech. Dev. 125, 325–336 (2008)

    Article  CAS  Google Scholar 

  32. Hayashi, S. & Yamaguchi, M. Kinase-independent activity of Cdc2/Cyclin A prevents the S phase in the Drosophila cell cycle. Genes Cells 4, 111–122 (1999)

    Article  CAS  Google Scholar 

  33. Ohshiro, T. & Saigo, K. Transcriptional regulation of breathless FGF receptor gene by binding of TRACHEALESS/dARNT heterodimers to three central midline elements in Drosophila developing trachea. Development 124, 3975–3986 (1997)

    CAS  PubMed  Google Scholar 

  34. Halfon, M. S. et al. New fluorescent protein reporters for use with the Drosophila Gal4 expression system and for vital detection of balancer chromosomes. Genesis 34, 135–138 (2002)

    Article  CAS  Google Scholar 

  35. Chou, T. B. & Perrimon, N. Use of a yeast site-specific recombinase to produce female germline chimeras in Drosophila . Genetics 131, 643–653 (1992)

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Le, T. et al. A new family of Drosophila balancer chromosomes with a w dfd-GMR yellow fluorescent protein marker. Genetics 174, 2255–2257 (2006)

    Article  CAS  Google Scholar 

  37. Bischof, J., Maeda, R. K., Hediger, M., Karch, F. & Basler, K. An optimized transgenesis system for Drosophila using germ-line-specific ϕC31 integrases. Proc. Natl Acad. Sci. USA 104, 3312–3317 (2007)

    Article  ADS  CAS  Google Scholar 

  38. Lee, H. S., Simon, J. A. & Lis, J. T. Structure and expression of ubiquitin genes of Drosophila melanogaster . Mol. Cell. Biol. 8, 4727–4735 (1988)

    Article  CAS  Google Scholar 

  39. Sotillos, S., Espinosa-Vázquez, J. M., Foglia, F., Hu, N. & Hombría, J. C.-G. An efficient approach to isolate STAT regulated enhancers uncovers STAT92E fundamental role in Drosophila tracheal development. Dev. Biol. 340, 571–582 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Kyoto and Bloomington Drosophila Stock Centers, the Developmental Studies Hybridoma Bank, E. Wieschaus, H. Oda and T. Nishimura for fly stocks and antibodies; K. Kato and H. Wada for assistance with data analysis and experiments; G. Sheng, E. Kuranaga, K. Kato, T. Otani and B. Dong for comments on the manuscript; and members of the Hayashi, Nishimura and Kuranaga laboratories for discussions. This work was supported by Grant-in-Aid for Scientific Research on Innovative Areas (22111007 to S.H.); Grant-in-Aid for Young Scientists (B) (23770624 to T.K.) from The Ministry of Education, Culture, Sports, Science and Technology, Japan; and the RIKEN Special Postdoctoral Researcher Program (T.K.)

Author information

Authors and Affiliations

Authors

Contributions

T.K. and S.H. conceived the project and wrote the manuscript, and T.K. performed the experiments.

Corresponding author

Correspondence to Shigeo Hayashi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-11, Supplementary Notes and additional references. (PDF 10689 kb)

Invagination of the tracheal placode

An embryo expressing E-cad-GFP (green) and His-RFP (magenta) Scale bar, 10 μm. (Related to Fig. 1a-c). (MOV 3698 kb)

Mitosis in the tracheal pit

An embryo expressing membrane-GFP. Scale bar, 10 μm. (Related to Fig. 1d). (MOV 2471 kb)

Invagination in a Cyclin A mutant embryo

A CycA mutant embryo expressing E-cad-GFP (green) and His-RFP (magenta). Scale bar, 10 μm. (Related to Fig. 2b). (MOV 2356 kb)

Invagination in a CycA bnl double mutant embryo

A CycA bnl double-mutant embryo expressing E-cad-GFP (green) and His-RFP (magenta) Scale bar, 10 μm. (Related to Fig. 2c). (MOV 2169 kb)

Invagination in a colchicine-treated embryo

A colchicine-treated embryo expressing E-cad-GFP (green) and His-RFP (magenta) Scale bar, 10 μm. (Related to Fig. 3). (MOV 3947 kb)

Invagination in a rho bnl double-mutant embryo

A rho bnl double-mutant embryo expressing Par-6-GFP (green) and His-RFP (magenta) Scale bar, 10 μm. (Related to Fig. 4e-h). (MOV 4456 kb)

Laser ablation of a non-tracheal cell

Laser ablation at the medial region of the apical surface of a surrounding cell. E-cad-GFP (green) and Myosin-mCherry (magenta). xy-view is the projection view of z2-6. Scale bar, 10 μm. (Related to Supplementary Fig. 9d-g). (MOV 524 kb)

Laser ablation of a tracheal cell at the apical-surface level

Laser ablation at the medial region of a central cell at the apical-surface level. E-cad-GFP (green) and Myosin-mCherry (magenta). xy-view is the projection view of z3-6. Scale bar, 10 μm. (Related to Supplementary Fig. 9h-j). (MOV 457 kb)

Laser ablation of a tracheal cell at the adherens junction level

Laser ablation at the medial region of a central cell at the adherens junction level. E-cad-GFP (green) and Myosin-mCherry (magenta). xy-view is the projection view of z3-6. Scale bar, 10 μm. (Related to Supplementary Fig. 9k-m). (MOV 474 kb)

Invagination in a rho CycA bnl triple mutant embryo

A rho CycA bnl triple-mutant embryo expressing Par-6-GFP (green) and His-RFP (magenta) Scale bar, 10 μm. (Related to Fig. 4i-l). (MOV 2506 kb)

Invagination in a rho CycA double mutant embryo

A rho CycA double-mutant embryo expressing Par-6-GFP (green) and His-RFP (magenta) Scale bar, 10 μm. (Related to Fig. S10i-l). (MOV 2286 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kondo, T., Hayashi, S. Mitotic cell rounding accelerates epithelial invagination. Nature 494, 125–129 (2013). https://doi.org/10.1038/nature11792

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11792

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing