Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nickel and helium evidence for melt above the core–mantle boundary



High 3He/4He ratios in some basalts have generally been interpreted as originating in an incompletely degassed lower-mantle source1,2,3,4,5,6,7,8,9. This helium source may have been isolated at the core–mantle boundary region since Earth’s accretion4,5,6. Alternatively, it may have taken part in whole-mantle convection and crust production over the age of the Earth7,8,9; if so, it is now either a primitive refugium at the core–mantle boundary8 or is distributed throughout the lower mantle7,9. Here we constrain the problem using lavas from Baffin Island, West Greenland, the Ontong Java Plateau, Isla Gorgona and Fernandina (Galapagos). Olivine phenocryst compositions show that these lavas originated from a peridotite source that was about 20 per cent higher in nickel content than in the modern mid-ocean-ridge basalt source. Where data are available, these lavas also have high 3He/4He. We propose that a less-degassed nickel-rich source formed by core–mantle interaction during the crystallization of a melt-rich layer or basal magma ocean5,6, and that this source continues to be sampled by mantle plumes. The spatial distribution of this source may be constrained by nickel partitioning experiments at the pressures of the core–mantle boundary.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Mg-numbers and Ni content for calculated 13 and observed olivine.
Figure 2: Mg-numbers and Ca, Mn and Fe/Mn contents for calculated 13 and observed olivine phenocrysts from MORBs (right panels) compared with Baffin Island and West Greenland 14 (left panels).
Figure 3: Mg-numbers and Ni contents for calculated olivine 13 and observed olivine phenocrysts.


  1. Kurz, M. D., Jenkins, W. J. & Hart, S. R. Helium isotopic systematics of oceanic islands and mantle heterogeneity. Nature 297, 43–47 (1982)

    ADS  CAS  Article  Google Scholar 

  2. Kurz, M. D., Curtice, J., Fornari, D., Geist, D. & Moreira, M. Primitive neon from the center of the Galàpagos hotspot. Earth Planet. Sci. Lett. 286, 23–34 (2009)

    ADS  CAS  Article  Google Scholar 

  3. Jackson, M. G. et al. Evidence for the survival of the oldest terrestrial mantle reservoir. Nature 466, 853–856 (2010)

    ADS  CAS  PubMed  Article  Google Scholar 

  4. Tolstikhin, I. & Hofmann, A. W. Early crust on top of the Earth’s core. Phys. Earth Planet. Inter. 148, 109–130 (2005)

    ADS  CAS  Article  Google Scholar 

  5. Labrosse, S., Hernlund, J. W. & Coltice, N. A crystallizing dense magma ocean at the base of the Earth’s mantle. Nature 450, 866–869 (2007)

    ADS  CAS  PubMed  Article  Google Scholar 

  6. Coltice, N., Moreira, M., Hernlund, J. & Labrosse, S. Crystallization of a basal magma ocean recorded by helium and neon. Earth Planet. Sci. Lett. 308, 193–199 (2011)

    ADS  CAS  Article  Google Scholar 

  7. Class, C. & Goldstein, S. L. Evolution of helium isotopes in the Earth’s mantle. Nature 436, 1107–1112 (2005)

    ADS  CAS  PubMed  Article  Google Scholar 

  8. Jackson, M. G. & Carlson, R. W. An ancient recipe for flood-basalt genesis. Nature 476, 316–319 (2011)

    ADS  CAS  PubMed  Article  Google Scholar 

  9. Gonnermann, H. M. & Mukhopadhyay, S. Preserving noble gases in a convecting mantle. Nature 459, 560–563 (2009)

    ADS  CAS  PubMed  Article  Google Scholar 

  10. McDonough, W. F. & Sun, S.-s. The composition of the Earth. Chem. Geol. 120, 223–253 (1995)

    ADS  CAS  Article  Google Scholar 

  11. Salters, V. J. M. & Stracke, A. Composition of depleted mantle. Geochem. Geophys. Geosyst. 5, Q05B07 (2004)

    Article  CAS  Google Scholar 

  12. Ionov, D. A. Compositional variations and heterogeneity in fertile lithospheric mantle: peridotite xenoliths in basalts from Tariat, Mongolia. Contrib. Mineral. Petrol. 154, 455–477 (2007)

    CAS  Article  Google Scholar 

  13. Herzberg, C. Identification of source lithology in the Hawaiian and Canary islands: implications for origins. J. Petrol. 52, 113–146 (2011)

    ADS  CAS  Article  Google Scholar 

  14. Sobolev, A. V. et al. The amount of recycled crust in sources of mantle-derived melts. Science 316, 412–417 (2007)

    ADS  CAS  PubMed  Article  Google Scholar 

  15. Arndt, N. T., Lesher, C. M. & Barnes, S. J. Komatiite 363–389 (Cambridge Univ. Press, 2008)

    Book  Google Scholar 

  16. Herzberg, C. & Gazel, E. Petrological evidence for secular cooling in mantle plumes. Nature 458, 619–622 (2009)

    ADS  CAS  PubMed  Article  Google Scholar 

  17. Putirka, K., Ryerson, F. J., Perfit, M. & Ridley, W. I. Mineralogy and composition of the oceanic mantle. J. Petrol. 52, 279–313 (2011)

    ADS  CAS  Article  Google Scholar 

  18. Puchtel, I. S., Walker, R. J., Brandon, A. D. & Nisbet, E. G. Pt–Re–Os and Sm–Nd isotope and HSE and REE systematics of the 2.7 Ga Belingwe and Abitibi komatiites. Geochim. Cosmochim. Acta 73, 6367–6389 (2009)

    ADS  CAS  Article  Google Scholar 

  19. Berry, A. J., Danyushevsky, D. V., O’Neill, H., St C, Newville, M. & Sutton, S. R. Oxidation state of iron in komatiitic melt inclusions indicates hot Archaean mantle. Nature 455, 960–963 (2008)

    ADS  CAS  Article  Google Scholar 

  20. Bézos, A., Lorand, J.-P., Humler, E. & Gros, M. Platinum-group element systematic in mid-oceanic ridge basaltic glasses from the Pacific, Atlantic, and Indian oceans. Geochim. Cosmochim. Acta 69, 2613–2627 (2005)

    ADS  Article  CAS  Google Scholar 

  21. Starkey, N. A. et al. Helium isotopes in early Iceland plume picrites: constraints on the composition of high 3He/4He mantle. Earth Planet. Sci. Lett. 277, 91–100 (2009)

    ADS  CAS  Article  Google Scholar 

  22. Révillon, S. et al. Heterogeneity of the Caribbean plateau mantle source: new constraints from Sr, O, and He isotope compositions of olivine and clinopyroxene. Earth Planet. Sci. Lett. 205, 91–106 (2002)

    ADS  Article  Google Scholar 

  23. Fiquet, G. et al. Melting of peridotite to 140 gigapascals. Science 329, 1516–1518 (2010)

    ADS  CAS  PubMed  Article  Google Scholar 

  24. Williams, Q. & Garnero, E. J. Seismic evidence for partial melt at the base of Earth’s mantle. Science 273, 1528–1530 (1996)

    ADS  CAS  Article  Google Scholar 

  25. Siebert, J., Badro, J., Antonangeli, D. & Ryerson, F. J. Metal-silicate partitioning of Ni and Co in a deep magma ocean. Earth Planet. Sci. Lett. 321/322, 189–197 (2012)

    ADS  Article  CAS  Google Scholar 

  26. Rubie, D. et al. Heterogeneous accretion, composition, and core-mantle differentiation of the Earth. Earth Planet. Sci. Lett. 301, 31–42 (2011)

    ADS  CAS  Article  Google Scholar 

  27. Walker, D. Core-mantle chemical issues. Can. Mineral. 43, 1553–1564 (2005)

    CAS  Article  Google Scholar 

  28. Brandon, A. D. et al. 186Os-187Os systematic of Gorgona Island komatiites: implications for early growth of the inner core. Earth Planet. Sci. Lett. 206, 411–426 (2003)

    ADS  CAS  Article  Google Scholar 

  29. Wade, J. & Wood, B. J. Core formation and the oxidation state of the Earth. Earth Planet. Sci. Lett. 236, 78–95 (2005)

    ADS  CAS  Article  Google Scholar 

  30. Larsen, L. M. & Pedersen, A. K. Processes in high-Mg, high T magmas: evidence from olivine, chromite and glass in Paleogene picrites from West Greenland. J. Petrol. 41, 1071–1098 (2000)

    ADS  CAS  Article  Google Scholar 

  31. Beattie, P. Ford, C. & Russell, D. Partition coefficients for olivine-melt and orthopyroxene-melt systems. Contrib. Mineral. Petrol. 109, 212–224 (1991)

  32. Jones, J. H. Temperature and pressure- independent correlations of olivine-liquid partition coefficients and their application to trace element partitioning. Contrib. Mineral Petrol. 88, 126–132 (1984)

    ADS  CAS  Article  Google Scholar 

  33. Matzen, A. K., Baker, M. B., Beckett, J. R. & Stolper, E. M. Ni partitioning between olivine and high-MgO silicate melts: implications for Ni contents of forsteritic phenocrysts in basalts. Abstr. Goldschmidt Conf. (2012)

  34. Herzberg, C. Geodynamic information in peridotite petrology. J. Petrol. 45, 2507–2530 (2004)

    ADS  CAS  Article  Google Scholar 

  35. Walter, M. J. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J. Petrol. 39, 29–60 (1998)

    ADS  CAS  Article  Google Scholar 

  36. Robin-Popieul, C. C. M. et al. A new model for Barberton komatiites: deep critical melting with high melt retention. J. Petrol. 53 (11), 2191–2229 (2012)

    ADS  Article  CAS  Google Scholar 

  37. Blichert-Toft, J., Arndt, N. T. & Gruau, G. Hf isotopic measurements on Barberton komatiites: effects of incomplete sample dissolution and importance for primary and secondary signatures. Chem. Geol. 207, 261–275 (2004)

    ADS  CAS  Article  Google Scholar 

  38. Corgne, A. et al. Trace element partitioning between majoritic garnet and silicate melt at 10-17 GPa: implications for deep mantle processes. Lithos 148, 128–141 (2012)

    ADS  CAS  Article  Google Scholar 

  39. Herzberg, C., Condie, K. & Korenaga, J. Thermal history of the Earth and its petrological expression. Earth Planet. Sci. Lett. 292, 79–88 (2010)

    ADS  CAS  Article  Google Scholar 

  40. Parman, S. W., Dann, J. C., Grove, T. L. & de Wit, M. J. Emplacement conditions of komatiite magmas from the 3.49 Ga Komati Formation, Barberton Greenstone Belt, South Africa. Earth Planet. Sci. Lett. 150, 303–323 (1997)

    ADS  CAS  Article  Google Scholar 

  41. Grove, T. L. & Parman, S. W. Thermal evolution of the Earth as recorded by komatiites. Earth Planet. Sci. Lett. 219, 173–187 (2004)

    ADS  CAS  Article  Google Scholar 

  42. Grove, T. L., Parman, S. W. & Dann, J. C. in Mantle Petrology: Field Observations and High Pressure Experimentation: A Tribute to Francis R. (Joe) Boyd (eds Fei, Y., Bertka, C. M. & Mysen, B. O.) 155–167 (The Geochemical Society, Special Publication 6, 1999)

    Google Scholar 

  43. Parman, S. W. & Grove, T. L. Harzburgite melting with and without H2O: experimental data and predictive modeling. J. Geophys. Res. 109, B02201 (2004)

    ADS  Article  CAS  Google Scholar 

  44. Balta, J. B., Asimow, P. D. & Mosenfelder, J. L. Hydrous, low-carbon melting of garnet peridotite. J. Petrol. 52, 2079–2105 (2011)

    ADS  CAS  Article  Google Scholar 

  45. Tenner, T. J., Hirschmann, M. M. & Humayun, M. The effect of H2O on partial melting of garnet peridotite at 3.5 GPa. Geochem. Geophys. Geosyst. 13, Q03016 (2012)

    ADS  Article  Google Scholar 

Download references


C.H. thanks L. Larsen, M. Portnyagin, A. Sobolev and D. Walker for discussions. We are very grateful to R. Walker for a critical review. D.A.I. acknowledges PNP grants from the French INSU-CNRS in 2010-2012 and P.D.A. acknowledges NSF grant EAR-1119522. P.D.A. thanks A. Matzen for extended discussions. D.G.’s work is funded by NSF grant EAR1145271.

Author information

Authors and Affiliations



C.H. modelled olivine compositions and developed a variety of magma ocean and core–mantle interaction interpretations. P.D.A. suggested the core–mantle interaction model in its current form and critiqued all Ni partition models. D.A.I. provided high-precision olivine and whole-rock analyses for mantle peridotite. C.V. acquired high-precision olivine data for Fernandina (Galapagos). M.G.J. provided information on Pb, Nd and He isotopes. D.G. provided rock samples from Fernandina. All authors contributed to the intellectual growth of this paper.

Corresponding author

Correspondence to Claude Herzberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text, Supplementary Figures 1-12 and Supplementary References. (PDF 18259 kb)

Supplementary Data

This file contains Supplementary Table 1, which contains High Precision Olivine Analyses for Peridotites. (XLS 62 kb)

Supplementary Data

This file contains Supplementary Table 2, which contains Olivine Analyses from Fernandina. (XLS 66 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Herzberg, C., Asimow, P., Ionov, D. et al. Nickel and helium evidence for melt above the core–mantle boundary. Nature 493, 393–397 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing