Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Pulsed accretion in a variable protostar



Periodic increases in luminosity arising from variable accretion rates have been predicted for some pre-main-sequence close binary stars as they grow from circumbinary disks1,2,3. The phenomenon is known as pulsed accretion and can affect the orbital evolution and mass distribution of young binaries2,4, as well as the potential for planet formation5,6. Accretion variability is a common feature of young stars, with a large range of amplitudes and timescales as measured from multi-epoch observations at optical7,8 and infrared9,10,11,12,13 wavelengths. Periodic variations consistent with pulsed accretion have been seen in only a few young binaries via optical accretion tracers14,15,16, albeit intermittently with accretion luminosity variations ranging from zero to 50 per cent from orbit to orbit. Here we report that the infrared luminosity of a young protostar (of age about 105 years) increases by a factor of ten in roughly one week every 25.34 days. We attribute this to pulsed accretion associated with an unseen binary companion. The strength and regularity of this accretion signal is surprising; it may be related to the very young age of the system, which is a factor of ten younger than the other pulsed accretors previously studied.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Multi-epoch spectral energy distribution of L54361.
Figure 2: Photometric light curves for L54361.
Figure 3: Near-infrared images of L54361.
Figure 4: Protostellar spectral energy distribution models for L54361.


  1. Artymowicz, P. & Lubow, S. H. Dynamics of binary-disk interaction. 1: Resonances and disk gap sizes. Astrophys. J. 421, 651–667 (1994)

    ADS  Article  Google Scholar 

  2. Artymowicz, P. & Lubow, S. H. Mass flow through gaps in circumbinary disks. Astrophys. J. 467, L77–L80 (1996)

    ADS  Article  Google Scholar 

  3. Gunther, R. & Kley, W. Circumbinary disk evolution. Astron. Astrophys. 387, 550–559 (2002)

    ADS  Article  Google Scholar 

  4. Shi, J., Krolik, J. H., Lubow, S. H. & Hawley, J. F. Three dimensional MHD simulation of circumbinary accretion disks: disk structures and angular momentum transport. Astrophys. J. 749, 118–144 (2012)

    ADS  Article  Google Scholar 

  5. Quintana, E. V. & Lissauer, J. J. Terrestrial planet formation surrounding close binary stars. Icarus 185, 1–20 (2006)

    ADS  Article  Google Scholar 

  6. Paardekooper, S.-J., Thebault, P. & Mellema, G. Planetesimal and gas dynamics in binaries. Mon. Not. R. Astron. Soc. 386, 973–988 (2008)

    ADS  Article  Google Scholar 

  7. Bouvier, J. et al. Magnetospheric accretion-ejection processes in the classical T Tauri star AA Tauri. Astron. Astrophys. 463, 1017–1028 (2007)

    ADS  CAS  Article  Google Scholar 

  8. Nguyen, D. C. & Scholz, A. van Kerkwijk, M. H., Jayawardhana, R. & Brandeker, A. How variable is accretion in young stars? Astrophys. J. 694, L153–L157 (2009)

    ADS  CAS  Article  Google Scholar 

  9. Flaherty, K. et al. Infrared variability of evolved protoplanetary disks: evidence for scale height variations in the inner disk. Astrophys. J. 748, 71–100 (2012)

    ADS  Article  Google Scholar 

  10. Morales-Calderón, M. et al. Ysovar: the first sensitive, wide-area, mid-infrared photometric monitoring of the Orion nebula cluster. Astrophys. J. 733, 50–59 (2011)

    ADS  Article  Google Scholar 

  11. Liu, M. C. et al. Mid-infrared imaging of young stellar objects. Astrophys. J. 461, 334–344 (1996)

    ADS  Article  Google Scholar 

  12. Barsony, M., Ressler, M. E. & Marsh, K. A. A. Mid-infrared imaging survey of embedded young stellar objects in the ρ Ophiuchi cloud core. Astrophys. J. 630, 381–399 (2005)

    ADS  Article  Google Scholar 

  13. Kóspál, A. et al. The outburst and nature of two young eruptive stars in the North America/Pelican Nebula Complex. Astron. Astrophys. 527, A133 (2011)

    Article  Google Scholar 

  14. Basri, G., Johns-Krull, C. M. & Mathieu, R. D. The classical T Tauri spectroscopic binary DQ tau. II. Emission line variations with orbital phase. Astron. J. 114, 781–792 (1997)

    ADS  CAS  Article  Google Scholar 

  15. Mathieu, R. D. et al. The classical T Tauri spectroscopic binary DQ tau. I. Orbital elements and light curves. Astron. J. 113, 1841–1854 (1997)

    ADS  Article  Google Scholar 

  16. Jensen, E. L. N. et al. Periodic accretion from a circumbinary disk in the young binary UZ Tau E. Astron. J. 134, 241–251 (2007)

    ADS  CAS  Article  Google Scholar 

  17. Stark, D. P., Whitney, B. A., Stassun, K. & Wood, K. Near-infrared synthetic images of protostellar disks and envelopes. Astrophys. J. 649, 900–913 (2006)

    ADS  Article  Google Scholar 

  18. Nordhagen, S., Herbst, W., Rhode, K. L. & Williams, E. C. The variability and rotation of pre-main-sequence stars in IC 348: does intracluster environment influence stellar rotation? Astron. J. 132, 1555–1570 (2006)

    ADS  CAS  Article  Google Scholar 

  19. Covey, K. R., Greene, T. P., Doppmann, G. W. & Lada, C. J. The angular momentum content and evolution of class I and flat-spectrum protostars. Astron. J. 129, 2765–2776 (2005)

    ADS  CAS  Article  Google Scholar 

  20. Wood, K. & Whitney, B. Scattered light signatures of magnetic accretion in classical T Tauri stars. Astrophys. J. 506, L43–L45 (1998)

    ADS  Article  Google Scholar 

  21. Herbst, W. et al. The light curve of the weakly accreting T Tauri binary KH 15D from 2005–2010: insights into the nature of its protoplanetary disk. Astron. J. 140, 2025–2035 (2010)

    ADS  Article  Google Scholar 

  22. Plavchan, P., Gee, A. H., Stapelfeldt, K. & Becker, A. The peculiar periodic YSO WL 4 in ρ Ophiuchius. Astrophys. J. 684, L37–L40 (2008)

    ADS  Article  Google Scholar 

  23. Skinner, G. K. Observations of optical flares in the recurrent X-ray transient A0538–66. Nature 288, 141–143 (1980)

    ADS  CAS  Article  Google Scholar 

  24. Densham, R. H., Charles, P. A., Menzies, J. W., van der Klis, M. & van Paradijs, J. Four outburst cycles of A0538–66: evidence for a rapidly evolving envelope around the primary. Mon. Not. R. Astron. Soc. 205, 1117–1133 (1983)

    ADS  Article  Google Scholar 

  25. Kenyon, S. J., Calvet, N. & Hartmann, L. The embedded young stars in the Taurus-Auriga molecular cloud. I — Models for spectral energy distributions. Astrophys. J. 414, 676–694 (1993)

    ADS  CAS  Article  Google Scholar 

  26. Hartmann, L., Cassen, P. & Kenyon, S. J. Disk accretion and the stellar birthline. Astrophys. J. 475, 770–785 (1997)

    ADS  Article  Google Scholar 

  27. White, R. J. & Hillenbrand, L. A. On the evolutionary status of class I stars and Herbig-Haro energy sources in Taurus-Auriga. Astrophys. J. 616, 998–1032 (2004)

    ADS  CAS  Article  Google Scholar 

Download references


This work was supported in part by NASA through Spitzer and HST GO contracts. We thank S. Lubow, M. Livio and N. Calvet for discussions. E.F. was visiting the Infrared Processing and Analysis Center, Caltech, during the course of this work.

Author information

Authors and Affiliations



J.M. and K.F. designed the Spitzer observations. Z.B. and R.G. reduced the IRAC images and compiled the photometry, while J.M. reduced and analysed the MIPS data. J.M. and E.F. extracted and analysed the IRS spectroscopy. J.M. designed the HST observations and analysed the images. E.F. calculated the radiative transfer models and fitted the observed SEDs. All authors contributed to the writing of the paper.

Corresponding author

Correspondence to James Muzerolle.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, Supplementary Tables 1-3, Supplementary Figures 1-5 and additional references. (PDF 1482 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Muzerolle, J., Furlan, E., Flaherty, K. et al. Pulsed accretion in a variable protostar. Nature 493, 378–380 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing