Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bypass of a protein barrier by a replicative DNA helicase

Abstract

Replicative DNA helicases generally unwind DNA as a single hexamer that encircles and translocates along one strand of the duplex while excluding the complementary strand (known as steric exclusion). By contrast, large T antigen, the replicative DNA helicase of the simian virus 40 (SV40), is reported to function as a pair of stacked hexamers that pumps double-stranded DNA through its central channel while laterally extruding single-stranded DNA. Here we use single-molecule and ensemble assays to show that large T antigen assembled on the SV40 origin unwinds DNA efficiently as a single hexamer that translocates on single-stranded DNA in the 3′-to-5′ direction. Unexpectedly, large T antigen unwinds DNA past a DNA–protein crosslink on the translocation strand, suggesting that the large T antigen ring can open to bypass bulky adducts. Together, our data underscore the profound conservation among replicative helicase mechanisms, and reveal a new level of plasticity in the interactions of replicative helicases with DNA damage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Large T antigen is not an obligate double hexamer during replication.
Figure 2: Real-time visualization of sister fork uncoupling during unwinding of doubly tethered DNA.
Figure 3: Large T antigen translocates on ssDNA in the 3′-to-5′ direction.
Figure 4: Large T antigen can bypass a covalent protein barrier on the translocation strand.
Figure 5: Bypass of tandem protein adducts by large T antigen depends on the inter-adduct distance.

Similar content being viewed by others

References

  1. Patel, S. S. & Picha, K. M. Structure and function of hexameric helicases. Annu. Rev. Biochem. 69, 651–697 (2000)

    Article  CAS  Google Scholar 

  2. Enemark, E. J. & Joshua-Tor, L. On helicases and other motor proteins. Curr. Opin. Struct. Biol. 18, 243–257 (2008)

    Article  CAS  Google Scholar 

  3. Egelman, E. H., Yu, X., Wild, R., Hingorani, M. M. & Patel, S. S. Bacteriophage T7 helicase/primase proteins form rings around single-stranded DNA that suggest a general structure for hexameric helicases. Proc. Natl Acad. Sci. USA 92, 3869–3873 (1995)

    Article  ADS  CAS  Google Scholar 

  4. Kaplan, D. L. & O’Donnell, M. Twin DNA pumps of a hexameric helicase provide power to simultaneously melt two duplexes. Mol. Cell 15, 453–465 (2004)

    Article  CAS  Google Scholar 

  5. Fu, Y. V. et al. Selective bypass of a lagging strand roadblock by the eukaryotic replicative DNA helicase. Cell 146, 931–941 (2011)

    Article  CAS  Google Scholar 

  6. Kaplan, D. L., Davey, M. J. & O’Donnell, M. Mcm4,6,7 uses a “pump in ring” mechanism to unwind DNA by steric exclusion and actively translocate along a duplex. J. Biol. Chem. 278, 49171–49182 (2003)

    Article  CAS  Google Scholar 

  7. Fanning, E. & Zhao, K. SV40 DNA replication: from the A gene to a nanomachine. Virology 384, 352–359 (2009)

    Article  CAS  Google Scholar 

  8. Fanning, E., Zhao, X. & Jiang, X. in DNA Tumor Viruses (eds Damania, B. & Pipas, J. M. ) 1–24 (Springer US, 2009)

    Book  Google Scholar 

  9. Wessel, R., Schweizer, J. & Stahl, H. Simian virus 40 T-antigen DNA helicase is a hexamer which forms a binary complex during bidirectional unwinding from the viral origin of DNA replication. J. Virol. 66, 804–815 (1992)

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Weisshart, K. et al. Two regions of simian virus 40 large T antigen determine cooperativity of double-hexamer assembly on the viral origin of DNA replication and promote hexamer interactions during bidirectional origin DNA unwinding. J. Virol. 73, 2201–2211 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Barbaro, B. A., Sreekumar, K. R., Winters, D. R., Prack, A. E. & Bullock, P. A. Phosphorylation of simian virus 40 large T antigen on Thr 124 selectively promotes double-hexamer formation on subfragments of the viral core origin. J. Virol. 74, 8601–8613 (2000)

    Article  CAS  Google Scholar 

  12. Smelkova, N. V. & Borowiec, J. A. Dimerization of simian virus 40 T-antigen hexamers activates T-antigen DNA helicase activity. J. Virol. 71, 8766–8773 (1997)

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Alexandrov, A. I., Botchan, M. R. & Cozzarelli, N. R. Characterization of simian virus 40 T-antigen double hexamers bound to a replication fork. J. Biol. Chem. 277, 44886–44897 (2002)

    Article  CAS  Google Scholar 

  14. SenGupta, D. J. & Borowiec, J. A. Strand-specific recognition of a synthetic DNA replication fork by the SV40 large tumor antigen. Science 256, 1656–1661 (1992)

    Article  ADS  CAS  Google Scholar 

  15. Morris, P. D. et al. Hepatitis C virus NS3 and simian virus 40 large T antigen helicases displace streptavidin from 5′-biotinylated oligonucleotides but not from 3′-biotinylated oligonucleotides: evidence for directional bias in translocation on single-stranded DNA. Biochemistry 41, 2372–2378 (2002)

    Article  CAS  Google Scholar 

  16. Goetz, G. S., Dean, F. B., Hurwitz, J. & Matson, S. W. The unwinding of duplex regions in DNA by the simian virus 40 large tumor antigen-associated DNA helicase activity. J. Biol. Chem. 263, 383–392 (1988)

    CAS  PubMed  Google Scholar 

  17. Enemark, E. J. & Joshua-Tor, L. Mechanism of DNA translocation in a replicative hexameric helicase. Nature 442, 270–275 (2006)

    Article  ADS  CAS  Google Scholar 

  18. Li, D. et al. Structure of the replicative helicase of the oncoprotein SV40 large tumour antigen. Nature 423, 512–518 (2003)

    Article  ADS  CAS  Google Scholar 

  19. Gai, D., Zhao, R., Li, D., Finkielstein, C. V. & Chen, X. S. Mechanisms of conformational change for a replicative hexameric helicase of SV40 large tumor antigen. Cell 119, 47–60 (2004)

    Article  CAS  Google Scholar 

  20. Gomez-Lorenzo, M. G. et al. Large large T antigen on the simian virus 40 origin of replication: a 3D snapshot prior to DNA replication. EMBO J. 22, 6205–6213 (2003)

    Article  CAS  Google Scholar 

  21. Cuesta, I. et al. Conformational rearrangements of SV40 large large T antigen during early replication events. J. Mol. Biol. 397, 1276–1286 (2010)

    Article  CAS  Google Scholar 

  22. Borowiec, J. A. & Hurwitz, J. ATP stimulates the binding of simian virus 40 (SV40) large tumor antigen to the SV40 origin of replication. Proc. Natl Acad. Sci. USA 85, 64–68 (1988)

    Article  ADS  CAS  Google Scholar 

  23. Sclafani, R. A., Fletcher, R. J. & Chen, X. S. Two heads are better than one: regulation of DNA replication by hexameric helicases. Genes Dev. 18, 2039–2045 (2004)

    Article  CAS  Google Scholar 

  24. Takahashi, T. S., Wigley, D. B. & Walter, J. C. Pumps, paradoxes and ploughshares: mechanism of the MCM2–7 DNA helicase. Trends Biochem. Sci. 30, 437–444 (2005)

    Article  CAS  Google Scholar 

  25. Yardimci, H., Loveland, A. B., Habuchi, S., van Oijen, A. M. & Walter, J. C. Uncoupling of sister replisomes during eukaryotic DNA replication. Mol. Cell 40, 834–840 (2010)

    Article  CAS  Google Scholar 

  26. Yardimci, H., Loveland, A. B., van Oijen, A. M. & Walter, J. C. Single-molecule analysis of DNA replication in Xenopus egg extracts. Methods 57, 179–186 (2012)

    Article  CAS  Google Scholar 

  27. Stillman, B. W. & Gluzman, Y. Replication and supercoiling of simian virus 40 DNA in cell extracts from human cells. Mol. Cell. Biol. 5, 2051–2060 (1985)

    Article  CAS  Google Scholar 

  28. Wobbe, C. R., Dean, F., Weissbach, L. & Hurwitz, J. In vitro replication of duplex circular DNA containing the simian virus 40 DNA origin site. Proc. Natl Acad. Sci. USA 82, 5710–5714 (1985)

    Article  ADS  CAS  Google Scholar 

  29. Bullock, P. A., Seo, Y. S. & Hurwitz, J. Initiation of simian virus 40 DNA synthesis in vitro. Mol. Cell. Biol. 11, 2350–2361 (1991)

    Article  CAS  Google Scholar 

  30. Murakami, Y. & Hurwitz, J. Functional interactions between SV40 large T antigen and other replication proteins at the replication fork. J. Biol. Chem. 268, 11008–11017 (1993)

    CAS  PubMed  Google Scholar 

  31. Kim, S., Dallmann, H. G., McHenry, C. S. & Marians, K. J. Coupling of a replicative polymerase and helicase: a τ-DnaB interaction mediates rapid replication fork movement. Cell 84, 643–650 (1996)

    Article  CAS  Google Scholar 

  32. Stano, N. M. et al. DNA synthesis provides the driving force to accelerate DNA unwinding by a helicase. Nature 435, 370–373 (2005)

    Article  ADS  CAS  Google Scholar 

  33. Chen, L. et al. Direct identification of the active-site nucleophile in a DNA (cytosine-5)-methyltransferase. Biochemistry 30, 11018–11025 (1991)

    Article  CAS  Google Scholar 

  34. Seinsoth, S., Uhlmann-Schiffler, H. & Stahl, H. Bidirectional DNA unwinding by a ternary complex of large T antigen, nucleolin and topoisomerase I. EMBO Rep. 4, 263–268 (2003)

    Article  CAS  Google Scholar 

  35. Barker, S., Weinfeld, M. & Murray, D. DNA-protein crosslinks: their induction, repair, and biological consequences. Mutat. Res. 589, 111–135 (2005)

    Article  CAS  Google Scholar 

  36. Anand, R. P. et al. Overcoming natural replication barriers: differential helicase requirements. Nucleic Acids Res. 40, 1091–1105 (2011)

    Article  Google Scholar 

  37. Wu, C., Roy, R. & Simmons, D. T. Role of single-stranded DNA binding activity of large T antigen in simian virus 40 DNA replication. J. Virol. 75, 2839–2847 (2001)

    Article  CAS  Google Scholar 

  38. Eki, T., Matsumoto, T., Murakami, Y. & Hurwitz, J. The replication of DNA containing the simian virus 40 origin by the monopolymerase and dipolymerase systems. J. Biol. Chem. 267, 7284–7294 (1992)

    CAS  PubMed  Google Scholar 

  39. Ishimi, Y., Claude, A., Bullock, P. & Hurwitz, J. Complete enzymatic synthesis of DNA containing the SV40 origin of replication. J. Biol. Chem. 263, 19723–19733 (1988)

    CAS  PubMed  Google Scholar 

  40. Wold, M. S., Li, J. J. & Kelly, T. J. Initiation of simian virus 40 DNA replication in vitro: large-tumor-antigen- and origin-dependent unwinding of the template. Proc. Natl Acad. Sci. USA 84, 3643–3647 (1987)

    Article  ADS  CAS  Google Scholar 

  41. Wang, I.-N. Lysis timing and bacteriophage fitness. Genetics 172, 17–26 (2005)

    Article  Google Scholar 

  42. Thomason, L. C., Oppenheim, A. B. & Court, D. L. Modifying bacteriophage lambda with recombineering. Methods Mol Biol. 501, 239–251 (2009)

    Article  CAS  Google Scholar 

  43. Kuhn, H. & Frank-Kamenetskii, M. D. Labeling of unique sequences in double-stranded DNA at sites of vicinal nicks generated by nicking endonucleases. Nucleic Acids Res. 36, e40 (2008)

    Article  Google Scholar 

  44. Loparo, J. J., Kulczyk, A. W., Richardson, C. C. & van Oijen, A. M. Simultaneous single-molecule measurements of phage T7 replisome composition and function reveal the mechanism of polymerase exchange. Proc. Natl Acad. Sci. USA 108, 3584–3589 (2011)

    Article  ADS  CAS  Google Scholar 

  45. MacMillan, A. M., Chen, L. & Verdine, G. L. Synthesis of an oligonucleotide suicide substrate for DNA methyltransferases. J. Org. Chem. 57, 2989–2991 (1992)

    Article  CAS  Google Scholar 

  46. Tanner, N. A. & van Oijen, A. M. in Single Molecule Tools, Part B:Super-Resolution, Particle Tracking, Multiparameter, and Force Based Methods (ed. Walter, N. G. ) 259–278 (Academic, 2010)

Download references

Acknowledgements

We thank C. Richardson for critical reading of the manuscript, and C. Etson for help in the preparation of λori DNA. J.C.W. was supported by grants from the National Institutes of Health (NIH) (GM62267 and HL098316) and American Cancer Society (ACS) (RSG0823401GMC). A.M.v.O. was supported by grants from the NIH (GM077248), ACS (RSG0823401GMC), and the Netherlands Organization for Scientific Research (NWO; Vici 680-47-607). J.H. was funded by NIH grant GM5 R01 GM034559. X.W. was a long-term postdoctoral fellow of the Human Frontier Science Program; D.Z.R. was supported by NIH grant GM086466.

Author information

Authors and Affiliations

Authors

Contributions

H.Y., A.M.v.O. and J.C.W. designed the experiments. H.Y. performed the experiments. X.W. and D.Z.R. supervised and assisted H.Y. for construction of λori DNA. A.B.L. made fluorescently tagged RPA. I.T. and J.H. provided RPA and large T antigen. H.Y., A.M.v.O. and J.C.W. interpreted the data and wrote the paper. X.W. and A.B.L. contributed equally.

Corresponding authors

Correspondence to Antoine M. van Oijen or Johannes C. Walter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-7. (PDF 591 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yardimci, H., Wang, X., Loveland, A. et al. Bypass of a protein barrier by a replicative DNA helicase. Nature 492, 205–209 (2012). https://doi.org/10.1038/nature11730

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11730

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing