Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Activated GTPase movement on an RNA scaffold drives co-translational protein targeting

Abstract

Approximately one-third of the proteome is initially destined for the eukaryotic endoplasmic reticulum or the bacterial plasma membrane1. The proper localization of these proteins is mediated by a universally conserved protein-targeting machinery, the signal recognition particle (SRP), which recognizes ribosomes carrying signal sequences2,3,4 and, through interactions with the SRP receptor5,6, delivers them to the protein-translocation machinery on the target membrane7. The SRP is an ancient ribonucleoprotein particle containing an essential, elongated SRP RNA for which precise functions have remained elusive. Here we used single-molecule fluorescence microscopy to show that the Escherichia coli SRP–SRP receptor GTPase complex, after initial assembly at the tetraloop end of SRP RNA, travels over 100 Å to the distal end of this RNA, where rapid GTP hydrolysis occurs. This movement is negatively regulated by the translating ribosome and, at a later stage, positively regulated by the SecYEG translocon, providing an attractive mechanism for ensuring the productive exchange of the targeting and translocation machineries at the ribosome exit site with high spatial and temporal accuracy. Our results show that large RNAs can act as molecular scaffolds that enable the easy exchange of distinct factors and precise timing of molecular events in a complex cellular process; this concept may be extended to similar phenomena in other ribonucleoprotein complexes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: smFRET–TIRF microscopy reveals dynamic movements of the SRP–FtsY complex on the SRP RNA.
Figure 2: The distal site of SRP RNA is crucial for GTPase activation and protein targeting.
Figure 3: Conformational rearrangements within the SRP–FtsY GTPase complex drive its movement to the RNA distal site.
Figure 4: RNC and SecYEG regulate GTPase movements on the SRP RNA.

Similar content being viewed by others

References

  1. Keenan, R. J., Freymann, D. M., Stroud, R. M. & Walter, P. The signal recognition particle. Annu. Rev. Biochem. 70, 755–775 (2001)

    Article  CAS  Google Scholar 

  2. Pool, M. R., Stumm, J., Fulga, T. A., Sinning, I. & Dobberstein, B. Distinct modes of signal recognition particle interaction with the ribosome. Science 297, 1345–1348 (2002)

    Article  ADS  CAS  Google Scholar 

  3. Halic, M. et al. Following the signal sequence from ribosomal tunnel exit to signal recognition particle. Nature 444, 507–511 (2006)

    Article  ADS  CAS  Google Scholar 

  4. Schaffitzel, C. et al. Structure of the E. coli signal recognition particle bound to a translating ribosome. Nature 444, 503–506 (2006)

    Article  ADS  CAS  Google Scholar 

  5. Focia, P. J., Shepotinovskaya, I. V., Seidler, J. A. & Freymann, D. M. Heterodimeric GTPase core of the SRP targeting complex. Science 303, 373–377 (2004)

    Article  ADS  CAS  Google Scholar 

  6. Egea, P. F. et al. Substrate twinning activates the signal recognition particle and its receptor. Nature 427, 215–221 (2004)

    Article  ADS  CAS  Google Scholar 

  7. Becker, T. et al. Structure of monomeric yeast and mammalian Sec61 complexes interacting with the translating ribosome. Science 326, 1369–1373 (2009)

    Article  ADS  CAS  Google Scholar 

  8. Peluso, P., Shan, S. O., Nock, S., Herschlag, D. & Walter, P. Role of SRP RNA in the GTPase cycles of ffh and FtsY. Biochemistry 40, 15224–15233 (2001)

    Article  CAS  Google Scholar 

  9. Zhang, X., Rashid, R., Wang, K. & Shan, S. O. Sequential checkpoints govern substrate selection during cotranslational protein targeting. Science 328, 757–760 (2010)

    Article  ADS  CAS  Google Scholar 

  10. Janda, C. Y. et al. Recognition of a signal peptide by the signal recognition particle. Nature 465, 507–510 (2010)

    Article  ADS  CAS  Google Scholar 

  11. Batey, R. T., Rambo, R. P., Lucast, L., Rha, B. & Doudna, J. A. Crystal structure of the ribonucleoprotein core of the signal recognition particle. Science 287, 1232–1239 (2000)

    Article  ADS  CAS  Google Scholar 

  12. Zhang, X., Kung, S. & Shan, S. O. Demonstration of a multistep mechanism for assembly of the SRP·SRP receptor complex: implications for the catalytic role of SRP RNA. J. Mol. Biol. 381, 581–593 (2008)

    Article  CAS  Google Scholar 

  13. Shen, K. & Shan, S. O. Transient tether between the SRP RNA and SRP receptor ensures efficient cargo delivery during cotranslational protein targeting. Proc. Natl Acad. Sci. USA 107, 7698–7703 (2010)

    Article  ADS  CAS  Google Scholar 

  14. Shen, K., Zhang, X. & Shan, S. O. Synergistic actions between the SRP RNA and translating ribosome allow efficient delivery of the correct cargos during cotranslational protein targeting. RNA 17, 892–902 (2011)

    Article  CAS  Google Scholar 

  15. Estrozi, L. F., Boehringer, D., Shan, S., Ban, N. & Schaffitzel, C. Cryo-EM structure of the E. coli translating ribosome in complex with SRP and its receptor. Nature Struct. Mol. Biol. 18, 88–90 (2011)

    Article  CAS  Google Scholar 

  16. Althoff, S., Selinger, D. & Wise, J. A. Molecular evolution of SRP cycle components: functional implications. Nucleic Acids Res. 22, 1933–1947 (1994)

    Article  CAS  Google Scholar 

  17. Ataide, S. F. et al. The crystal structure of the signal recognition particle in complex with its receptor. Science 331, 881–886 (2011)

    Article  ADS  CAS  Google Scholar 

  18. Ha, T. et al. Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc. Natl Acad. Sci. USA 93, 6264–6268 (1996)

    Article  ADS  CAS  Google Scholar 

  19. Roy, R., Hohng, S. & Ha, T. A practical guide to single-molecule FRET. Nature Methods 5, 507–516 (2008)

    Article  CAS  Google Scholar 

  20. McKinney, S. A., Joo, C. & Ha, T. Analysis of single-molecule FRET trajectories using hidden Markov modeling. Biophys. J. 91, 1941–1951 (2006)

    Article  ADS  CAS  Google Scholar 

  21. Shan, S. O., Chandrasekar, S. & Walter, P. Conformational changes in the GTPase modules of the signal reception particle and its initiation of protein translocation. J. Cell Biol. 178, 611–620 (2007)

    Article  CAS  Google Scholar 

  22. Shan, S. O., Stroud, R. M. & Walter, P. Mechanism of association and reciprocal activation of two GTPases. PLoS Biol. 2, e320 (2004)

    Article  Google Scholar 

  23. Zhang, X., Schaffitzel, C., Ban, N. & Shan, S. O. Multiple conformational switches in a GTPase complex control co-translational protein targeting. Proc. Natl Acad. Sci. USA 106, 1754–1759 (2009)

    Article  ADS  CAS  Google Scholar 

  24. Zhang, X. et al. Direct visualization reveals dynamics of a transient intermediate during protein assembly. Proc. Natl Acad. Sci. USA 108, 6450–6455 (2011)

    Article  ADS  CAS  Google Scholar 

  25. Halic, M. et al. Signal recognition particle receptor exposes the ribosomal translocon binding site. Science 312, 745–747 (2006)

    Article  ADS  CAS  Google Scholar 

  26. Hoskins, A. A., Gelles, J. & Moore, M. J. New insights into the spliceosome by single molecule fluorescence microscopy. Curr. Opin. Chem. Biol. 15, 864–870 (2011)

    Article  CAS  Google Scholar 

  27. Lohman, T. M. & Bjornson, K. P. Mechanisms of helicase-catalyzed DNA unwinding. Annu. Rev. Biochem. 65, 169–214 (1996)

    Article  CAS  Google Scholar 

  28. Yodh, J. G., Schlierf, M. & Ha, T. Insight into helicase mechanism and function revealed through single-molecule approaches. Q. Rev. Biophys. 43, 185–217 (2010)

    Article  CAS  Google Scholar 

  29. Yuan, R. Structure and mechanism of multifunctional restriction endonucleases. Annu. Rev. Biochem. 50, 285–315 (1981)

    Article  CAS  Google Scholar 

  30. Murray, N. E. Type I restriction systems: sophisticated molecular machines (a legacy of Bertani and Weigle). Microbiol. Mol. Biol. Rev. 64, 412–434 (2000)

    Article  CAS  Google Scholar 

  31. Schaffitzel, C. & Ban, N. Generation of ribosome nascent chain complexes for structural and functional studies. J. Struct. Biol. 158, 463–471 (2007)

    Article  CAS  Google Scholar 

  32. van der Sluis, E. O., Nouwen, N. & Driessen, A. J. SecY-SecY and SecY-SecG contacts revealed by site-specific crosslinking. FEBS Lett. 527, 159–165 (2002)

    Article  CAS  Google Scholar 

  33. Ferré-D’Amaré, A. R. & Doudna, J. A. Use of cis- and trans-ribozymes to remove 5′ and 3′ heterogeneities from milligrams of in vitro transcribed RNA. Nucleic Acids Res. 24, 977–978 (1996)

    Article  Google Scholar 

  34. Dalal, K. & Duong, F. Reconstitution of the SecY translocon in nanodiscs. Methods Mol. Biol. 619, 145–156 (2010)

    Article  CAS  Google Scholar 

  35. Van den Berg, B. et al. X-ray structure of a protein-conducting channel. Nature 427, 36–44 (2004)

    Article  CAS  Google Scholar 

  36. Mothes, W., Jungnickel, B., Brunner, J. & Rapoport, T. A. Signal sequence recognition in cotranslational translocation by protein components of the endoplasmic reticulum membrane. J. Cell Biol. 142, 355–364 (1998)

    Article  CAS  Google Scholar 

  37. Duong, F. Binding, activation and dissociation of the dimeric SecA ATPase at the dimeric SecYEG translocase. EMBO J. 22, 4375–4384 (2003)

    Article  CAS  Google Scholar 

  38. Powers, T. & Walter, P. Co-translational protein targeting catalyzed by the Escherichia coli signal recognition particle and its receptor. EMBO J. 16, 4880–4886 (1997)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Ban and members of the Shan group for comments on the manuscript, C. Richards, L. Cai, T. Zhiyentayev, K. Lee and R. Zhou for help with RNC labelling and the instrument and software setup, and C.L. Guo, S. Kou and H. Lester for discussions. This work is supported by National Institutes of Health (NIH) grant GM078024 to S.-o.S., an NIH instrument supplement to grant GM45162 to D.C. Rees, and Caltech matching fund 350270 for the single-molecule instruments. S.-o.S. was supported by the Beckman Young Investigator award, the David and Lucile Packard Fellowship in Science and Engineering, and the Henry Dreyfus Teacher-Scholar award. T.H. was supported by National Science Foundation Physics Frontiers Centers program (08222613) and NIH grant GM065367.

Author information

Authors and Affiliations

Authors

Contributions

K.S., S.A., T.H. and S.-o.S. conceived the experiments. K.S. purified and labelled Ffh, FtsY, DNA, RNA and RNC. D.A. purified SecYEG and performed the GTPase assay in Fig. 4a. K.S. and S.A. carried out smFRET measurements under the direction of T.H. K.S. and S.A. analysed the data. K.S. and S.-o.S. wrote the paper with inputs from all other authors.

Corresponding author

Correspondence to Shu-ou Shan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-12. (PDF 7294 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, K., Arslan, S., Akopian, D. et al. Activated GTPase movement on an RNA scaffold drives co-translational protein targeting. Nature 492, 271–275 (2012). https://doi.org/10.1038/nature11726

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11726

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing