Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CCR5 is a receptor for Staphylococcus aureus leukotoxin ED

Abstract

Pore-forming toxins are critical virulence factors for many bacterial pathogens and are central to Staphylococcus aureus-mediated killing of host cells. S. aureus encodes pore-forming bi-component leukotoxins that are toxic towards neutrophils, but also specifically target other immune cells. Despite decades since the first description of staphylococcal leukocidal activity, the host factors responsible for the selectivity of leukotoxins towards different immune cells remain unknown. Here we identify the human immunodeficiency virus (HIV) co-receptor CCR5 as a cellular determinant required for cytotoxic targeting of subsets of myeloid cells and T lymphocytes by the S. aureus leukotoxin ED (LukED). We further demonstrate that LukED-dependent cell killing is blocked by CCR5 receptor antagonists, including the HIV drug maraviroc. Remarkably, CCR5-deficient mice are largely resistant to lethal S. aureus infection, highlighting the importance of CCR5 targeting in S. aureus pathogenesis. Thus, depletion of CCR5+ leukocytes by LukED suggests a new immune evasion mechanism of S. aureus that can be therapeutically targeted.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: LukED requires CCR5 for cell killing.
Figure 2: LukE directly interacts with CCR5.
Figure 3: LukED kills CCR5 + human memory T cells, macrophages and dendritic cells.
Figure 4: CCR5 + cell killing is important for S. aureus pathogenesis.

Similar content being viewed by others

References

  1. Foster, T. J. Immune evasion by staphylococci. Nature Rev. Microbiol. 3, 948–958 (2005)

    Article  CAS  Google Scholar 

  2. Bischofberger, M., Iacovache, I. & Gisou van der Goot, F. Pathogenic pore-forming proteins: function and host response. Cell Host Microbe 12, 266–275 (2012)

    Article  CAS  Google Scholar 

  3. Menestrina, G. et al. Ion channels and bacterial infection: the case of β-barrel pore-forming protein toxins of Staphylococcus aureus . FEBS Lett. 552, 54–60 (2003)

    Article  CAS  Google Scholar 

  4. Dumont, A. L. et al. Characterization of a new cytotoxin that contributes to Staphylococcus aureus pathogenesis. Mol. Microbiol. 79, 814–825 (2011)

    Article  CAS  Google Scholar 

  5. Van de Velde, H. Etude sur le mécanisme de la virulence du staphylocoque pyogène. Cellule 10, 403–460 (1894)

    Google Scholar 

  6. Panton, P. N. & Valentine, F. C. O. Staphylococcal toxin. Lancet i, 506–508 (1932)

    Article  Google Scholar 

  7. Alonzo, F., III et al. Staphylococcus aureus leucocidin ED contributes to systemic infection by targeting neutrophils and promoting bacterial growth in vivo . Mol. Microbiol. 83, 423–435 (2012)

    Article  CAS  Google Scholar 

  8. Morner, A. et al. Primary human immunodeficiency virus type 2 (HIV-2) isolates, like HIV-1 isolates, frequently use CCR5 but show promiscuity in coreceptor usage. J. Virol. 73, 2343–2349 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Deng, H. et al. Identification of a major co-receptor for primary isolates of HIV-1. Nature 381, 661–666 (1996)

    Article  ADS  CAS  Google Scholar 

  10. Doranz, B. J. et al. A dual-tropic primary HIV-1 isolate that uses fusin and the beta-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell 85, 1149–1158 (1996)

    Article  CAS  Google Scholar 

  11. Didigu, C. A. & Doms, R. W. Novel approaches to inhibit HIV entry. Viruses 4, 309–324 (2012)

    Article  CAS  Google Scholar 

  12. Strizki, J. M. et al. Discovery and characterization of vicriviroc (SCH 417690), a CCR5 antagonist with potent activity against human immunodeficiency virus type 1. Antimicrob. Agents Chemother. 49, 4911–4919 (2005)

    Article  CAS  Google Scholar 

  13. Baba, M. et al. A small-molecule, nonpeptide CCR5 antagonist with highly potent and selective anti-HIV-1 activity. Proc. Natl Acad. Sci. USA 96, 5698–5703 (1999)

    Article  ADS  CAS  Google Scholar 

  14. Lee, B. et al. Epitope mapping of CCR5 reveals multiple conformational states and distinct but overlapping structures involved in chemokine and coreceptor function. J. Biol. Chem. 274, 9617–9626 (1999)

    Article  CAS  Google Scholar 

  15. Rich, R. L., Miles, A. R., Gale, B. K. & Myszka, D. G. Detergent screening of a G-protein-coupled receptor using serial and array biosensor technologies. Anal. Biochem. 386, 98–104 (2009)

    Article  CAS  Google Scholar 

  16. Liu, R. et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86, 367–377 (1996)

    Article  CAS  Google Scholar 

  17. Samson, M. et al. Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382, 722–725 (1996)

    Article  ADS  CAS  Google Scholar 

  18. El Hed, A. et al. Susceptibility of human Th17 cells to human immunodeficiency virus and their perturbation during infection. J. Infect. Dis. 201, 843–854 (2010)

    Article  CAS  Google Scholar 

  19. Wan, Q. et al. Cytokine signals through PI-3 kinase pathway modulate Th17 cytokine production by CCR6+ human memory T cells. J. Exp. Med. 208, 1875–1887 (2011)

    Article  CAS  Google Scholar 

  20. Saita, Y., Kondo, M. & Shimizu, Y. Species selectivity of small-molecular antagonists for the CCR5 chemokine receptor. Int. Immunopharmacol. 7, 1528–1534 (2007)

    Article  CAS  Google Scholar 

  21. Golding, H. et al. Inhibition of HIV-1 infection by a CCR5-binding cyclophilin from Toxoplasma gondii . Blood 102, 3280–3286 (2003)

    Article  CAS  Google Scholar 

  22. Aliberti, J. et al. Molecular mimicry of a CCR5 binding-domain in the microbial activation of dendritic cells. Nat. Immunol. 4, 485–490 (2003)

    Article  CAS  Google Scholar 

  23. Rahbar, R., Murooka, T. T. & Fish, E. N. Role for CCR5 in dissemination of vaccinia virus in vivo . J. Virol. 83, 2226–2236 (2009)

    Article  CAS  Google Scholar 

  24. Lalani, A. S. et al. Use of chemokine receptors by poxviruses. Science 286, 1968–1971 (1999)

    Article  CAS  Google Scholar 

  25. Hummel, S., Schmidt, D., Kremeyer, B., Herrmann, B. & Oppermann, M. Detection of the CCR5- Δ 32 HIV resistance gene in Bronze Age skeletons. Genes Immun. 6, 371–374 (2005)

    Article  CAS  Google Scholar 

  26. Lucotte, G. Frequencies of 32 base pair deletion of the (Δ32) allele of the CCR5 HIV-1 co-receptor gene in Caucasians: a comparative analysis. Infect. Genet. Evol. 1, 201–205 (2002)

    Article  CAS  Google Scholar 

  27. Hedrick, P. W. & Verrelli, B. C. ‘Ground truth’ for selection on CCR5-Δ32 . Trends Genet. 22, 293–296 (2006)

    Article  CAS  Google Scholar 

  28. Moore, P. C. & Lindsay, J. A. Molecular characterisation of the dominant UK methicillin-resistant Staphylococcus aureus strains, EMRSA-15 and EMRSA-16. J. Med. Microbiol. 51, 516–521 (2002)

    Article  CAS  Google Scholar 

  29. Vandenesch, F. et al. Community-acquired methicillin-resistant Staphylococcus aureus carrying Panton-Valentine leukocidin genes: worldwide emergence. Emerg. Infect. Dis. 9, 978–984 (2003)

    Article  Google Scholar 

  30. von Eiff, C., Friedrich, A. W., Peters, G. & Becker, K. Prevalence of genes encoding for members of the staphylococcal leukotoxin family among clinical isolates of Staphylococcus aureus . Diagn. Microbiol. Infect. Dis. 49, 157–162 (2004)

    Article  CAS  Google Scholar 

  31. DeLeo, F. R. et al. Molecular differentiation of historic phage-type 80/81 and contemporary epidemic Staphylococcus aureus . Proc Natl Acad Sci USA 108, 18091–18096 (2011)

    Article  ADS  CAS  Google Scholar 

  32. Zielinski, C. E. et al. Pathogen-induced human TH17 cells produce IFN-γ or IL-10 and are regulated by IL-1β. Nature 484, 514–518 (2012)

    Article  ADS  CAS  Google Scholar 

  33. Cho, J. S. et al. IL-17 is essential for host defense against cutaneous Staphylococcus aureus infection in mice. J. Clin. Invest. 120, 1762–1773 (2010)

    Article  Google Scholar 

  34. Lin, L. et al. Th1-Th17 cells mediate protective adaptive immunity against Staphylococcus aureus and Candida albicans infection in mice. PLoS Pathog. 5, e1000703 (2009)

    Article  Google Scholar 

  35. Oswald-Richter, K. et al. Identification of a CCR5-expressing T cell subset that is resistant to R5-tropic HIV infection. PLoS Pathog. 3, e58 (2007)

    Article  Google Scholar 

  36. Gramberg, T., Sunseri, N. & Landau, N. R. Evidence for an activation domain at the amino terminus of simian immunodeficiency virus Vpx. J. Virol. 84, 1387–1396 (2010)

    Article  CAS  Google Scholar 

  37. Manel, N. et al. A cryptic sensor for HIV-1 activates antiviral innate immunity in dendritic cells. Nature 467, 214–217 (2010)

    Article  ADS  CAS  Google Scholar 

  38. Berro, R. et al. Multiple CCR5 conformations on the cell surface are used differentially by human immunodeficiency viruses resistant or sensitive to CCR5 inhibitors. J. Virol. 85, 8227–8240 (2011)

    Article  CAS  Google Scholar 

  39. Stenlund, P., Babcock, G. J., Sodroski, J. & Myszka, D. G. Capture and reconstitution of G protein-coupled receptors on a biosensor surface. Anal. Biochem. 316, 243–250 (2003)

    Article  CAS  Google Scholar 

  40. Navratilova, I., Sodroski, J. & Myszka, D. G. Solubilization, stabilization, and purification of chemokine receptors using biosensor technology. Anal. Biochem. 339, 271–281 (2005)

    Article  CAS  Google Scholar 

  41. Navratilova, I., Dioszegi, M. & Myszka, D. G. Analyzing ligand and small molecule binding activity of solubilized GPCRs using biosensor technology. Anal. Biochem. 355, 132–139 (2006)

    Article  CAS  Google Scholar 

  42. Navratilova, I., Pancera, M., Wyatt, R. T. & Myszka, D. G. A biosensor-based approach toward purification and crystallization of G protein-coupled receptors. Anal. Biochem. 353, 278–283 (2006)

    Article  CAS  Google Scholar 

  43. Caccuri, F. et al. HIV-1 matrix protein p17 promotes angiogenesis via chemokine receptors CXCR1 and CXCR2. Proc. Natl Acad. Sci. USA 109, 14580–14585 (2012)

    Article  ADS  CAS  Google Scholar 

  44. Giagulli, C. et al. HIV-1 matrix protein p17 binds to the IL-8 receptor CXCR1 and shows IL-8-like chemokine activity on monocytes through Rho/ROCK activation. Blood 119, 2274–2283 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Torres laboratory, D. R. Littman, M. Lu, and A. Darwin for reading this manuscript. We also thank V. KewalRamani for providing reagents, and S. Polsky for assistance with purification of PBMCs. This research was supported by New York University School of Medicine Development Funds, an American Heart Association Scientist Development Grant (09SDG2060036) to V.J.T. and National Institutes of Health (NIH) grants R56-AI091856-01A1 to V.J.T., NIH training grant T32-AI007180 to F.A., A.L.D. and S.A.R., NIH R42-MH084372-02A1 to D.G.M., and NIH R21-AI087973 and R01-AI065303 grants to D.U.

Author information

Authors and Affiliations

Authors

Contributions

F.A. and V.J.T. identified CCR5 as the LukED receptor. F.A., A.L.D. and T.R.-R. purified the toxins. S.A.R. generated the CCR5 shRNA knockdown and CCR5 over-expressing cells. F.A., S.A.R. and A.L.D. performed the cytotoxicity assays of cell lines. L.K. purified and sorted primary cells. D.U. designed the experiments for the effect of LukED on human cells. L.K. performed the experiments with primary human cells and S.A.R. performed the HIV infection experiments. F.A. and T.R.-R. conducted the biochemical and cell binding studies with LukED and GFP fusion proteins. F.A. and T.R.-R. conducted the animal studies. D.M. performed the surface plasmon resonance experiments. N.R.L. provided cDNA plasmids and the Δ32 CCR5 primary cells. V.J.T. and D.U. coordinated and directed the project. All authors discussed the data and commented on the manuscript. F.A., D.U. and V.J.T. interpreted the data and wrote the manuscript.

Corresponding authors

Correspondence to Derya Unutmaz or Victor J. Torres.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-13. (PDF 1336 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alonzo III, F., Kozhaya, L., Rawlings, S. et al. CCR5 is a receptor for Staphylococcus aureus leukotoxin ED. Nature 493, 51–55 (2013). https://doi.org/10.1038/nature11724

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11724

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology