Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metabolic phenotyping in clinical and surgical environments

Abstract

Metabolic phenotyping involves the comprehensive analysis of biological fluids or tissue samples. This analysis allows biochemical classification of a person's physiological or pathological states that relate to disease diagnosis or prognosis at the individual level and to disease risk factors at the population level. These approaches are currently being implemented in hospital environments and in regional phenotyping centres worldwide. The ultimate aim of such work is to generate information on patient biology using techniques such as patient stratification to better inform clinicians on factors that will enhance diagnosis or the choice of therapy. There have been many reports of direct applications of metabolic phenotyping in a clinical setting.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Technology platforms and analytical timescales for patient journey phenotyping, diagnostic and prognostic biomarker discovery, and population disease-risk biomarker modelling.
Figure 2: Local and global metabolic interactions in relation to sampled compartments, fluids and their properties.
Figure 3: Phenotyping the patient journey and phenotypically augmented clinical trials.

Similar content being viewed by others

References

  1. Mirnezami, R., Nicholson, J. & Darzi, A. Preparing for precision medicine. N. Engl. J. Med. 366, 489–491 (2012).

    Article  PubMed  Google Scholar 

  2. Gavaghan, C. L., Holmes, E., Lenz, E., Wilson, I. D. & Nicholson, J. K. An NMR-based metabonomic approach to investigate the biochemical consequences of genetic strain differences: application to the C57BL10J and Alpk:ApfCD mouse. FEBS Lett. 484, 169–174 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Holmes, E. et al. Human metabolic phenotype diversity and its association with diet and blood pressure. Nature 453, 396–400 (2008). This study is the first example of the metabolome-wide association study concept in which disease risk factors (such as elevated blood pressure) were analysed in relation to exploratory (NMR) spectroscopic data.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Holmes, E., Wilson, I. D. & Nicholson, J. K. Metabolic phenotyping in health and disease. Cell 134, 714–717 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Nicholson, J. K. & Lindon, J. C. Systems biology: metabonomics. Nature 455, 1054–1056 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Fiehn, O. Metabolomics—the link between genotypes and phenotypes. Plant Mol. Biol. 48, 155–171 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Nicholson, J. K., Lindon, J. C. & Holmes, E. 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29, 1181–1189 (1999). This article describes and defines metabonomics as a tool for studying systemic metabolic changes due to disease, stresses, physiological stimulus or genetic modification.

    Article  CAS  PubMed  Google Scholar 

  8. Nicholson, J. K. & Wilson, I. D. Understanding 'global' systems biology: metabonomics and the continuum of metabolism. Nature Rev. Drug Discov. 2, 668–676 (2003).

    Article  CAS  Google Scholar 

  9. Holmes, E. et al. Nuclear magnetic resonance spectroscopy and pattern recognition analysis of the biochemical processes associated with the progression of and recovery from nephrotoxic lesions in the rat induced by mercury(II) chloride and 2-bromoethanamine. Mol. Pharmacol. 42, 922–930 (1992). This article reports the first use of metabolic profiling approaches to follow longitudinal changes in systemic metabolism.

    CAS  PubMed  Google Scholar 

  10. Loscalzo, J., Kohane, I. & Barabasi, A. L. Human disease classification in the postgenomic era: a complex systems approach to human pathobiology. Mol. Syst. Biol. 3, 124 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tomlins, A. M. et al. High resolution 1H NMR spectroscopic studies on dynamic biochemical processes in incubated human seminal fluid samples. Biochim. Biophys. Acta 1379, 367–380 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Patterson, A. D. et al. Metabolomics reveals attenuation of the SLC6A20 kidney transporter in nonhuman primate and mouse models of type 2 diabetes mellitus. J. Biol. Chem. 286, 19511–19522 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Robertson, D. G., Reily, M. D. & Baker, J. D. Metabonomics in pharmaceutical discovery and development. J. Proteome Res. 6, 526–539 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Trygg, J., Holmes, E. & Lundstedt, T. Chemometrics in metabonomics. J. Proteome Res. 6, 469–479 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Nevedomskaya, E., Mayboroda, O. A. & Deelder, A. M. Cross-platform analysis of longitudinal data in metabolomics. Mol. Biosyst. 7, 3214–3222 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Nicholson, J. K. et al. Proton-nuclear-magnetic-resonance studies of serum, plasma and urine from fasting normal and diabetic subjects. Biochem. J. 217, 365–375 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Iles, R. A., Snodgrass, G. J., Chalmers, R. A. & Stacey, T. E. Rapid screening of metabolic diseases by proton NMR. Lancet 2, 1221–1222 (1984). This article provides an early example of the power of non-targeted phenotyping for use in classification of metabolic diseases and for exploring pathway abnormalities in genetic disease.

    Article  CAS  PubMed  Google Scholar 

  18. Suhre, K. et al. Metabolic footprint of diabetes: a multiplatform metabolomics study in an epidemiological setting. PLoS ONE 5, e13953 (2010).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  19. Makinen, V. P. et al. 1H NMR metabonomics approach to the disease continuum of diabetic complications and premature death. Mol. Syst. Biol. 4, 167 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Salek, R. M. et al. A metabolomic comparison of urinary changes in type 2 diabetes in mouse, rat, and human. Physiol Genomics 29, 99–108 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Oresic, M. et al. Dysregulation of lipid and amino acid metabolism precedes islet autoimmunity in children who later progress to type 1 diabetes. J. Exp. Med. 205, 2975–2984 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang, T. J. et al. Metabolite profiles and the risk of developing diabetes. Nature Med. 17, 448–453 (2011).

    Article  PubMed  CAS  Google Scholar 

  23. Friedrich, N. Metabolomics in diabetes research. J. Endocrinol. 215, 29–42 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Howells, S. L. Maxwell, R. J. Griffiths, J. R. Classification of tumour 1H NMR spectra by pattern recognition. NMR Biomed. 5, 59–64 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. Fan, L. et al. Identification of metabolic biomarkers to diagnose epithelial ovarian cancer using a UPLC/QTOF/MS platform. Acta Oncol. 51, 473–479 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Garcia, E. et al. Diagnosis of early stage ovarian cancer by 1H NMR metabonomics of serum explored by use of a microflow NMR probe. J. Proteome Res. 10, 1765–1771 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Carrola, J. et al. Metabolic signatures of lung cancer in biofluids: NMR-based metabonomics of urine. J. Proteome Res. 10, 221–230 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Gaudet, M. M. et al. Analysis of serum metabolic profiles in women with endometrial cancer and controls in a population-based case–control study. J. Clin. Endocrinol. Metab. 97, 3216–3223 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ganti, S. et al. Urinary acylcarnitines are altered in human kidney cancer. Int. J. Cancer 130, 2791–2800 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Nishiumi, S. et al. A novel serum metabolomics-based diagnostic approach for colorectal cancer. PLoS ONE 7, e40459 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Slupsky, C. M. et al. Urine metabolite analysis offers potential early diagnosis of ovarian and breast cancers. Clin. Cancer Res. 16, 5835–5841 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Lin, L. et al. LC-MS based serum metabonomic analysis for renal cell carcinoma diagnosis, staging, and biomarker discovery. J. Proteome Res. 10, 1396–1405 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Oakman, C. et al. Identification of a serum-detectable metabolomic fingerprint potentially correlated with the presence of micrometastatic disease in early breast cancer patients at varying risks of disease relapse by traditional prognostic methods. Ann. Oncol. 22, 1295–1301 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Tenori, L. et al. Exploration of serum metabolomic profiles and outcomes in women with metastatic breast cancer: a pilot study. Mol. Oncol. 6, 437–444 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Griffin, J. L. & Shockcor, J. P. Metabolic profiles of cancer cells. Nature Rev. Cancer 4, 551–561 (2004).

    Article  CAS  Google Scholar 

  36. Tennant, D. A., Durán, R. V. & Gottlieb, E. Targeting metabolic transformation for cancer therapy. Nature Rev. Cancer 10, 267–277 (2010). This is an important study on the use of targeted metabolic analysis for understanding fundamental metabolic processes in cancer cells for the discovery of drug targets and strategies.

    Article  CAS  Google Scholar 

  37. Spratlin, J. L., Serkova, N. J. & Eckhardt, S. G. Clinical applications of metabolomics in oncology: a review. Clin. Cancer Res. 15, 431–440 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Griffin, J. L., Atherton, H., Shockcor, J. P. & Atzori, L. Metabolomics as a tool for cardiac research. Nature Rev. Cardiol. 8, 630–643 (2011).

    Article  CAS  Google Scholar 

  39. Shah, S. H. et al. Baseline metabolomic profiles predict cardiovascular events in patients at risk for coronary artery disease. Am. Heart J. 163, 844–850 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011). This article reports the major discovery of the potential involvement of gut-microbial metabolism in developing cardiovascular disease.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Caldeira, M. et al. Profiling allergic asthma volatile metabolic patterns using a headspace-solid phase microextraction/gas chromatography based methodology. J. Chromatogr. A 1218, 3771–3780 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Fens, N. et al. Exhaled air molecular profiling in relation to inflammatory subtype and activity in COPD. Eur. Respir. J. 38, 1301–1309 (2009).

    Article  CAS  Google Scholar 

  43. Saude, E. J. et al. Metabolomic profiling of asthma: diagnostic utility of urine nuclear magnetic resonance spectroscopy. J. Allergy Clin. Immunol. 127, 757–764 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Ubhi, B. K. et al. Metabolic profiling detects biomarkers of protein degradation in COPD patients. Eur. Respir. J. 40, 345–355 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nicholson, J. K. et al. Host–gut microbiota metabolic interactions. Science. 336, 1262–1267 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Ooi, M. et al. GC/MS-based profiling of amino acids and TCA cycle-related molecules in ulcerative colitis. Inflamm. Res. 60, 831–840 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Williams, H. R. et al. Characterization of inflammatory bowel disease with urinary metabolic profiling. Am. J. Gastroenterol. 104, 1435–1444 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Marchesi, J. R. et al. Rapid and non-invasive metabonomic characterization of inflammatory bowel disease. J. Proteome Res. 6, 546–551 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Li, M. et al. Symbiotic gut microbes modulate human metabolic phenotypes. Proc. Natl Acad. Sci. USA 105, 2117–2122 (2008). This article reports the first demonstration of statistical cross-omics integration to unravel gut-microbe–host metabolic interactions.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hooper, L. V., Littman, D. R. & Macpherson, A. J. Interactions between the microbiota and the immune system. Science 336, 1268–1273 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Swann, J. R. et al. Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proc. Natl Acad. Sci. USA 108, 4523–4530 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Holmes, E. et al. Therapeutic modulation of microbiota–host metabolic interactions. Sci. Transl. Med. 4, 137rv6 (2012). This article provides a comprehensive discussion of major gut-microbe–host metabolic interactions and possible therapeutic interventional strategies.

    Article  PubMed  CAS  Google Scholar 

  55. Muccioli, G. G. et al. The endocannabinoid system links gut microbiota to adipogenesis. Mol. Syst. Biol. 6, 392 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Yap, I. K. et al. Urinary metabolic phenotyping differentiates children with autism from their unaffected siblings and age-matched controls. J. Proteome Res. 9, 2996–3004 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Evans, C. et al. Altered amino acid excretion in children with autism. Nutr. Neurosci. 11, 9–17 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Thomas, E. L. et al. Aberrant adiposity and ectopic lipid deposition characterize the adult phenotype of the preterm infant. Pediatr. Res. 70, 507–512 (2011).

    Article  PubMed  Google Scholar 

  59. Gordon J. I. Honor thy gut symbionts: redux. Science 336, 1251–1253 (2012). This article provides an overview of the importance of the gut microbiome in the aetiopathogenesis of diverse non-infectious diseases.

    Article  ADS  CAS  PubMed  Google Scholar 

  60. Jia, W., Li, H., Zhao, L. & Nicholson, J. K. Gut microbiota: a potential new territory for drug targeting. Nature Rev. Drug Discov. 7, 123–129 (2008).

    Article  CAS  Google Scholar 

  61. Kinross, J. M., Holmes, E., Darzi, A. W. & Nicholson, J. K. Metabolic phenotyping for monitoring surgical patients. Lancet 377, 1817–1819 (2011).

    Article  PubMed  Google Scholar 

  62. Clayton, T. A. et al. Pharmaco-metabonomic phenotyping and personalized drug treatment. Nature 440, 1073–1077 (2006). This report provides the first description of the use of pre-interventional metabolic profile models to predict interventional outcomes.

    Article  ADS  CAS  PubMed  Google Scholar 

  63. Clayton, T. A., Baker, D., Lindon, J. C., Everett, J. R. & Nicholson, J. K. Pharmacometabonomic identification of a significant host–microbiome metabolic interaction affecting human drug metabolism. Proc. Natl Acad. Sci. USA 106, 14728–14733 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Backshall, A., Sharma, R., Clarke, S. J. & Keun, H. C. Pharmacometabonomic profiling as a predictor of toxicity in patients with inoperable colorectal cancer treated with capecitabine. Clin. Cancer Res. 17, 3019–3028 (2011). This study is the first example of pharmacometabonomic principles to predict drug toxicity in humans.

    Article  CAS  PubMed  Google Scholar 

  65. Schmerler, D. et al. Targeted metabolomics for discrimination of systemic inflammatory disorders in critically ill patients. J. Lipid Res. 53, 1369–1375 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cohen, M. J., Serkova, N. J., Wiener-Kronish, J., Pittet, J. F. & Niemann, C. U. 1H-NMR-based metabolic signatures of clinical outcomes in trauma patients—beyond lactate and base deficit. J. Trauma 69, 31–40 (2010).

    PubMed  Google Scholar 

  67. Polinder, S., Haagsma, J. A., Toet, H. & van Beeck, E. F. Epidemiological burden of minor, major and fatal trauma in a national injury pyramid. Br. J. Surg. 99, 114–121 (2012).

    Article  PubMed  Google Scholar 

  68. Alverdy, J. C., Laughlin, R. S. & Wu, L. Influence of the critically ill state on host–pathogen interactions within the intestine: gut-derived sepsis redefined. Crit. Care Med. 31, 598–607 (2003).

    Article  PubMed  Google Scholar 

  69. Volkert, D., Saeglitz, C., Gueldenzoph, H., Sieber, C. C. & Stehle, P. Undiagnosed malnutrition and nutrition-related problems in geriatric patients. J. Nutr. Health Aging 14, 387–392 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Fitzgerald, S. P. & Bean, N. G. An analysis of the interactions between individual comorbidities and their treatments – implications for guidelines and polypharmacy. J. Am. Med. Dir. Assoc. 11, 475–484 (2010).

    Article  PubMed  Google Scholar 

  71. Shah, A. A. et al. Metabolic profiles predict adverse events after coronary artery bypass grafting. J. Thorac. Cardiovasc. Surg. 143, 873–878 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mao, H. et al. Systemic metabolic changes of traumatic critically ill patients revealed by an NMR-based metabonomic approach. J. Proteome Res. 8, 5423–5430 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Chen, J. et al. Metabonomics study of the acute graft rejection in rat renal transplantation using reversed-phase liquid chromatography and hydrophilic interaction chromatography coupled with mass spectrometry. Mol. Biosyst. 8, 871–878 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Kim, C. D. et al. Metabonomic analysis of serum metabolites in kidney transplant recipients with cyclosporine A- or tacrolimus-based immunosuppression. Transplantation 90, 748–756 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Legido-Quigley, C. et al. Bile UPLC-MS fingerprinting and bile acid fluxes during human liver transplantation. Electrophoresis 32, 2063–2070 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Girlanda, R. et al. Metabolomics of human intestinal transplant rejection. Am. J. Transplant. http://dx.doi.org/10.1111/j.1600-6143.2012.04183.x (July 2012).

  77. Fornari, F., Comis, V. R. & Lisboa, H. R. Bariatric surgery or medical therapy for obesity. N. Engl J. Med. 367, 474 (2012).

    PubMed  Google Scholar 

  78. Li, J. V. et al. Metabolic surgery profoundly influences gut microbial–host metabolic cross-talk. Gut 60, 1214–1223 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Mutch, D. M. et al. Metabolite profiling identifies candidate markers reflecting the clinical adaptations associated with Roux-en-Y gastric bypass surgery. PLoS ONE 4, e7905 (2009).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  80. Zhang, H. et al. Human gut microbiota in obesity and after gastric bypass. Proc. Natl Acad. Sci. USA 106, 2365–2370 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  81. Biagi, E., Candela, M., Fairweather-Tait, S., Franceschi, C. & Brigidi, P. Aging of the human metaorganism: the microbial counterpart. Age (Dordr.) 34, 247–267 (2012).

    Article  Google Scholar 

  82. Claesson, M. J. et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 488, 178–184 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  83. Jeevan, R. et al. Reoperation rates after breast conserving surgery for breast cancer among women in England: retrospective study of hospital episode statistics. Br. Med. J. 345, e4505 (2012).

    Article  CAS  Google Scholar 

  84. Chan, E. C. et al. Metabolic profiling of human colorectal cancer using high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy and gas chromatography mass spectrometry (GC/MS). J. Proteome Res. 8, 352–361 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Opstad, K. S., Bell, B. A., Griffiths, J. R. & Howe, F. A. An investigation of human brain tumour lipids by high-resolution magic angle spinning 1H MRS and histological analysis. NMR Biomed. 21, 677–685 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Wright, A. J. et al. Ex-vivo HRMAS of adult brain tumours: metabolite quantification and assignment of tumour biomarkers. Mol. Cancer 9, 66 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Wu, C. L. et al. Metabolomic imaging for human prostate cancer detection. Sci. Transl. Med. 2, 16ra18 (2010).

    Google Scholar 

  88. Bertilsson, H. et al. Changes in gene transcription underlying the aberrant citrate and choline metabolism in human prostate cancer samples. Clin. Cancer Res. 18, 3261–3269 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. McDonnell, L. A. & Heeren, R. M. Imaging mass spectrometry. Mass Spectrom. Rev. 26, 606–643 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  90. Balog, J. et al. Identification of biological tissues by rapid evaporative ionization mass spectrometry. Anal. Chem. 82, 7343–7350 (2010). This article provides a description of the technology development and application of the 'intelligent knife' concept for real-time surgical diagnostics.

    Article  CAS  PubMed  Google Scholar 

  91. Guenther, S. et al. Electrospray post-ionization mass spectrometry of electrosurgical aerosols. J. Am. Soc. Mass Spectrom. 22, 2082–2089 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  92. Gerbig, S. et al. Analysis of colorectal adenocarcinoma tissue by desorption electrospray ionization mass spectrometric imaging. Anal. Bioanal. Chem. 403, 2315–2325 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Schafer, K. C. et al. Real time analysis of brain tissue by direct combination of ultrasonic surgical aspiration and sonic spray mass spectrometry. Anal. Chem. 83, 7729–7735 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. Beckonert, O. et al. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nature Protocal. 2, 2692–2703 (2007).

    Article  CAS  Google Scholar 

  95. Lindon, J. C. & Nicholson, J. K. Spectroscopic and statistical techniques for information recovery in metabonomics and metabolomics. Annu. Rev. Anal. Chem. 1, 45–69 (2008).

    Article  CAS  Google Scholar 

  96. Wong, A. et al. Evaluation of high resolution magic-angle coil spinning NMR spectroscopy for metabolic profiling of nanoliter tissue biopsies. Anal. Chem. 84, 3843–3848 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Jellum, E. et al. Application of glass capillary-column gas chromatography-mass spectrometry to the studies of human diseases. J. Chromatogr. 126, 487–493 (1976).

    Article  CAS  PubMed  Google Scholar 

  98. Ramautar, R., Mayboroda, O. A., Somsen, G. W. & de Jong, G. J. CE-MS for metabolomics: developments and applications in the period 2008–2010. Electrophoresis 32, 52–65 (2011).

    Article  CAS  PubMed  Google Scholar 

  99. Crockford, D. J. et al. Statistical heterospectroscopy, an approach to the integrated analysis of NMR and UPLC-MS data sets: application in metabonomic toxicology studies. Anal. Chem. 78, 363–371 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Fonville, J. M. et al. Robust data processing and normalization strategy for MALDI mass spectrometric imaging. Anal. Chem. 84, 1310–1319 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the National Institute of Health Research Biomedical Research Centre for funding clinical and surgical metabonomic projects in real-time diagnostics and chemical imaging at Imperial College London. We also wish to thank the MRC and NIHR for funding major programmes that relate to these studies, including the MRC-NIHR Phenome Centre (joint with Kings College London, Bruker Spectrospin and the Waters Corporation) and the Imperial NIHR Clinical Phenome Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy K. Nicholson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicholson, J., Holmes, E., Kinross, J. et al. Metabolic phenotyping in clinical and surgical environments. Nature 491, 384–392 (2012). https://doi.org/10.1038/nature11708

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11708

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research