Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Circadian topology of metabolism

Abstract

Biological clocks are genetically encoded oscillators that allow organisms to anticipate changes in the light–dark environment that are tied to the rotation of Earth. Clocks enhance fitness and growth in prokaryotes, and they are expressed throughout the central nervous system and peripheral tissues of multicelled organisms in which they influence sleep, arousal, feeding and metabolism. Biological clocks capture the imagination because of their tie to geophysical time, and tools are now in hand to analyse their function in health and disease at the cellular and molecular level.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Circadian adaptation as a unifying model that integrates behaviour and physiology.
Figure 2: Affect of ageing and environmental disruption on circadian control of metabolic processes.
Figure 3: Cross-talk between clock transcription and metabolic systems at the molecular and physiological levels.
Figure 4: Genomic and epigenetic links between circadian and metabolic systems.
Figure 5: Topological model of circadian physiology.

References

  1. Allada, R., Emery, P., Takahashi, J. S. & Rosbash, M. Stopping time: the genetics of fly and mouse circadian clocks. Annu. Rev. Neurosci. 24, 1091–1119 (2001).

    CAS  PubMed  Google Scholar 

  2. Hardin, P. E., Hall, J. C. & Rosbash, M. Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature 343, 536–540 (1990).

    ADS  CAS  PubMed  Google Scholar 

  3. Loros, J. J. & Dunlap, J. C. Neurospora crassa clock-controlled genes are regulated at the level of transcription. Mol. Cell. Biol. 11, 558–563 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hsu, D. S. et al. Putative human blue-light photoreceptors hCRY1 and hCRY2 are flavoproteins. Biochemistry 35, 13871–13877 (1996).

    CAS  PubMed  Google Scholar 

  5. Kitayama, Y., Nishiwaki, T., Terauchi, K. & Kondo, T. Dual KaiC-based oscillations constitute the circadian system of cyanobacteria. Genes Dev. 22, 1513–1521 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Nakajima, M. et al. Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science 308, 414–415 (2005). This paper reports the reconstitution of the first circadian reaction in vitro in the presence of just protein and ATP.

    ADS  CAS  PubMed  Google Scholar 

  7. Rust, M. J., Golden, S. S. & O'Shea, E. K. Light-driven changes in energy metabolism directly entrain the cyanobacterial circadian oscillator. Science 331, 220–223 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rutter, J., Reick, M., Wu, L. C. & McKnight, S. L. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 293, 510–514 (2001). This paper initiated the hypothesis that circadian cycles arise from metabolic cycles.

    CAS  PubMed  Google Scholar 

  9. O'Neill, J. S. & Reddy, A. B. Circadian clocks in human red blood cells. Nature 469, 498–503 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. O'Neill, J. S. et al. Circadian rhythms persist without transcription in a eukaryote. Nature 469, 554–558 (2011). This work advanced the hypothesis that redox sensing occurs in eukaryotes independently of transcription and stimulate consideration of the origins of circadian oscillators.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Edgar, R. S. et al. Peroxiredoxins are conserved markers of circadian rhythms. Nature 485, 459–464 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dodd, A. N. et al. Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309, 630–633 (2005).

    ADS  CAS  PubMed  Google Scholar 

  13. Chen, Z., Odstrcil, E. A., Tu, B. P. & McKnight, S. L. Restriction of DNA replication to the reductive phase of the metabolic cycle protects genome integrity. Science 316, 1916–1919 (2007).

    ADS  CAS  PubMed  Google Scholar 

  14. Provencio, I., Jiang, G., De Grip, W. J., Hayes, W. P. & Rollag, M. D. Melanopsin: an opsin in melanophores, brain, and eye. Proc. Natl Acad. Sci. USA 95, 340–345 (1998).

    ADS  CAS  PubMed  Google Scholar 

  15. Guler, A. D. et al. Melanopsin cells are the principal conduits for rod–cone input to non-image-forming vision. Nature 453, 102–105 (2008).

    ADS  PubMed  PubMed Central  Google Scholar 

  16. Hattar, S., Liao, H. W., Takao, M., Berson, D. M. & Yau, K. W. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295, 1065–1070 (2002).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gooley, J. J., Lu, J., Chou, T. C., Scammell, T. E. & Saper, C. B. Melanopsin in cells of origin of the retinohypothalamic tract. Nature Neurosci. 4, 1165 (2001).

    CAS  PubMed  Google Scholar 

  18. Stephan, F. K. & Zucker, I. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc. Natl Acad. Sci. USA 69, 1583–1586 (1972).

    ADS  CAS  PubMed  Google Scholar 

  19. Ralph, M. R., Foster, R. G., Davis, F. C. & Menaker, M. Transplanted suprachiasmatic nucleus determines circadian period. Science 247, 975–978 (1990).

    ADS  CAS  PubMed  Google Scholar 

  20. Chou, T. C. et al. Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms. J. Neurosci. 23, 10691–10702 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Landry, G. J. et al. Evidence for time-of-day dependent effect of neurotoxic dorsomedial hypothalamic lesions on food anticipatory circadian rhythms in rats. PLoS ONE 6, e24187 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sutton, G. M. et al. The melanocortin-3 receptor is required for entrainment to meal intake. J. Neurosci. 28, 12946–12955 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lin, L. et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98, 365–376 (1999). This study placed the orexin pathway at the genetic intersection of sleep and metabolism.

    CAS  PubMed  Google Scholar 

  24. Nishino, S. et al. Low cerebrospinal fluid hypocretin (orexin) and altered energy homeostasis in human narcolepsy. Ann. Neurol. 50, 381–388 (2001).

    CAS  PubMed  Google Scholar 

  25. Funato, H. et al. Enhanced orexin receptor-2 signaling prevents diet-induced obesity and improves leptin sensitivity. Cell Metab. 9, 64–76 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Yamazaki, S. et al. Effects of aging on central and peripheral mammalian clocks. Proc. Natl Acad. Sci. USA 99, 10801–10806 (2002).

    ADS  CAS  PubMed  Google Scholar 

  27. Dubrovsky, Y. V., Samsa, W. E. & Kondratov, R. V. Deficiency of circadian protein CLOCK reduces lifespan and increases age-related cataract development in mice. Aging (Albany NY) 2, 936–944 (2010).

    CAS  Google Scholar 

  28. Kondratov, R. V., Kondratova, A. A., Gorbacheva, V. Y., Vykhovanets, O. V. & Antoch, M. P. Early aging and age-related pathologies in mice deficient in BMAL1, the core component of the circadian clock. Genes Dev. 20, 1868–1873 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Matsuo, T. et al. Control mechanism of the circadian clock for timing of cell division in vivo. Science 302, 255–259 (2003).

    ADS  CAS  PubMed  Google Scholar 

  30. Damiola, F. et al. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 14, 2950–2961 (2000). The work in this report followed pioneering studies, by the same group, demonstrating cell-autonomous oscillation of the circadian clock in fibroblasts, and provided the first evidence for peripheral molecular clock entrainment to feeding.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Le Minh, N., Damiola, F., Tronche, F., Schutz, G. & Schibler, U. Glucocorticoid hormones inhibit food-induced phase-shifting of peripheral circadian oscillators. EMBO J. 20, 7128–7136 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Buhr, E. D., Yoo, S. H. & Takahashi, J. S. Temperature as a universal resetting cue for mammalian circadian oscillators. Science 330, 379–385 (2010).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Saini, C., Morf, J., Stratmann, M., Gos, P. & Schibler, U. Simulated body temperature rhythms reveal the phase-shifting behavior and plasticity of mammalian circadian oscillators. Genes Dev. 26, 567–580 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Asher, G. et al. Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell 142, 943–953 (2010).

    CAS  PubMed  Google Scholar 

  35. Kohsaka, A. et al. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab. 6, 414–421 (2007). This study showed that a high-fat diet can perturb core properties of the internal clock.

    CAS  PubMed  Google Scholar 

  36. Turek, F. W. et al. Obesity and metabolic syndrome in circadian Clock mutant mice. Science 308, 1043–1045 (2005). This article reports work that opened genetic approaches to probe links between clocks and metabolism.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dudley, C. A. et al. Altered patterns of sleep and behavioral adaptability in NPAS2-deficient mice. Science 301, 379–383 (2003).

    ADS  CAS  PubMed  Google Scholar 

  38. Arble, D. M., Bass, J., Laposky, A. D., Vitaterna, M. H. & Turek, F. W. Circadian timing of food intake contributes to weight gain. Obesity (Silver Spring) 17, 2100–2102 (2009).

    Google Scholar 

  39. Hatori, M. et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 15, 848–860 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Fonken, L. K. et al. Light at night increases body mass by shifting the time of food intake. Proc. Natl Acad. Sci. USA 107, 18664–18669 (2010).

    ADS  CAS  PubMed  Google Scholar 

  41. Spiegel, K., Leproult, R. & Van Cauter, E. Impact of sleep debt on metabolic and endocrine function. Lancet 354, 1435–1439 (1999).

    CAS  PubMed  Google Scholar 

  42. Scheer, F. A., Hilton, M. F., Mantzoros, C. S. & Shea, S. A. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc. Natl Acad. Sci. USA 106, 4453–4458 (2009).

    ADS  CAS  PubMed  Google Scholar 

  43. Shea, S. A., Hilton, M. F., Hu, K. & Scheer, F. A. Existence of an endogenous circadian blood pressure rhythm in humans that peaks in the evening. Circ. Res. 108, 980–984 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang, J., Yin, L. & Lazar, M. A. The orphan nuclear receptor Rev-erb α regulates circadian expression of plasminogen activator inhibitor type 1. J. Biol. Chem. 281, 33842–33848 (2006).

    CAS  PubMed  Google Scholar 

  45. Schoenhard, J. A. et al. Regulation of the PAI-1 promoter by circadian clock components: differential activation by BMAL1 and BMAL2. J. Mol. Cell. Cardiol. 35, 473–481 (2003).

    CAS  PubMed  Google Scholar 

  46. Jeyaraj, D. et al. Circadian rhythms govern cardiac repolarization and arrhythmogenesis. Nature 483, 96–99 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bray, M. S. et al. Disruption of the circadian clock within the cardiomyocyte influences myocardial contractile function, metabolism, and gene expression. Am. J. Physiol. Heart Circ. Physiol. 294, H1036–H1047 (2008).

    CAS  PubMed  Google Scholar 

  48. Curtis, A. M. et al. Circadian variation of blood pressure and the vascular response to asynchronous stress. Proc. Natl Acad. Sci. USA 104, 3450–3455 (2007).

    ADS  CAS  PubMed  Google Scholar 

  49. Cheng, B. et al. Tissue-intrinsic dysfunction of circadian clock confers transplant arteriosclerosis. Proc. Natl Acad. Sci. USA 108, 17147–17152 (2011).

    ADS  CAS  PubMed  Google Scholar 

  50. Pan, X., Zhang, Y., Wang, L. & Hussain, M. M. Diurnal regulation of MTP and plasma triglyceride by CLOCK is mediated by SHP. Cell Metab. 12, 174–186 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Douris, N. et al. Nocturnin regulates circadian trafficking of dietary lipid in intestinal enterocytes. Curr. Biol. 21, 1347–1355 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Marcheva, B. et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 466, 571–572 (2010).

    Google Scholar 

  53. Rudic, R. D. et al. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol. 2, e377 (2004).

    PubMed  PubMed Central  Google Scholar 

  54. Lamia, K. A., Storch, K. F. & Weitz, C. J. Physiological significance of a peripheral tissue circadian clock. Proc. Natl Acad. Sci. USA 105, 15172–15177 (2008).

    ADS  CAS  PubMed  Google Scholar 

  55. Zhang, E. E. et al. Cryptochrome mediates circadian regulation of cAMP signalling and hepatic gluconeogenesis. Nature Med. 16, 1152–1156 (2010).

    CAS  PubMed  Google Scholar 

  56. Lamia, K. A. et al. Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature 480, 552–556 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. Baggs, J. E. et al. Network features of the mammalian circadian clock. PLoS Biol. 7, e52 (2009).

    PubMed  Google Scholar 

  58. Dioum, E. M. et al. NPAS2: a gas-responsive transcription factor. Science 298, 2385–2387 (2002).

    ADS  CAS  PubMed  Google Scholar 

  59. Gilles-Gonzalez, M. A. & Gonzalez, G. Signal transduction by heme-containing PAS-domain proteins. J. Appl. Physiol. 96, 774–783 (2004).

    CAS  PubMed  Google Scholar 

  60. Marvin, K. A. et al. Nuclear receptors Homo sapiens Rev-erbβ and Drosophila melanogaster E75 are thiolate-ligated heme proteins which undergo redox-mediated ligand switching and bind CO and NO. Biochemistry 48, 7056–7071 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Yin, L. et al. Rev-erbα, a heme sensor that coordinates metabolic and circadian pathways. Science 318, 1786–1789 (2007).

    ADS  CAS  PubMed  Google Scholar 

  62. Raghuram, S. et al. Identification of heme as the ligand for the orphan nuclear receptors REV-ERBα and REV-ERBβ. Nature Struct. Mol. Biol. 14, 1207–1213 (2007).

    CAS  Google Scholar 

  63. Lamia, K. A. et al. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 326, 437–440 (2009). This study introduces a molecular mechanism for feedback regulation of the internal clock through metabolic flux.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Panda, S. et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109, 307–320 (2002). This study applied genomic approaches to define the widespread circadian control of metabolic pathways.

    CAS  PubMed  Google Scholar 

  65. Yang, X. et al. Nuclear receptor expression links the circadian clock to metabolism. Cell 126, 801–810 (2006).

    CAS  PubMed  Google Scholar 

  66. Dufour, C. R. et al. Genomic convergence among ERRα, PROX1, and BMAL1 in the control of metabolic clock outputs. PLoS Genet. 7, e1002143 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Liu, C., Li, S., Liu, T., Borjigin, J. & Lin, J. D. Transcriptional coactivator PGC-1α integrates the mammalian clock and energy metabolism. Nature 447, 477–481 (2007).

    ADS  CAS  PubMed  Google Scholar 

  68. Schmutz, I., Ripperger, J. A., Baeriswyl-Aebischer, S. & Albrecht, U. The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors. Genes Dev. 24, 345–357 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Torra, I. P. et al. Circadian and glucocorticoid regulation of Rev-erbα expression in liver. Endocrinology 141, 3799–3806 (2000).

    CAS  PubMed  Google Scholar 

  70. Preitner, N. et al. The orphan nuclear receptor REV-ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110, 251–260 (2002).

    CAS  PubMed  Google Scholar 

  71. Solt, L. A. et al. Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists. Nature 485, 62–68 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bugge, A. et al. Rev-erbα and Rev-erbβ coordinately protect the circadian clock and normal metabolic function. Genes Dev. 26, 657–667 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Cho, H. et al. Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β. Nature 485, 123–127 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yin, L. & Lazar, M. A. The orphan nuclear receptor Rev-erbα recruits the N-CoR/histone deacetylase 3 corepressor to regulate the circadian Bmal1 gene. Mol. Endocrinol. 19, 1452–1459 (2005).

    CAS  PubMed  Google Scholar 

  75. Feng, D. et al. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 331, 1315–1319 (2011). This paper integrates genomic approaches to illustrate the epigenetic mechanisms that link circadian oscillation with metabolism.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rey, G. et al. Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver. PLoS Biol. 9, e1000595 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Etchegaray, J. P., Lee, C., Wade, P. A. & Reppert, S. M. Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 421, 177–182 (2003).

    ADS  CAS  PubMed  Google Scholar 

  78. Doi, M., Hirayama, J. & Sassone-Corsi, P. Circadian regulator CLOCK is a histone acetyltransferase. Cell 125, 497–508 (2006).

    CAS  PubMed  Google Scholar 

  79. Nakahata, Y. et al. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134, 329–340 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Asher, G. et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134, 317–328 (2008). References 79 and 80 report a link between the ageing related sirtuin deacetylases and circadian metabolism.

    CAS  PubMed  Google Scholar 

  81. Ramsey, K. M. et al. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 324, 651–654 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nakahata, Y., Sahar, S., Astarita, G., Kaluzova, M. & Sassone-Corsi, P. Circadian control of the NAD+ salvage pathway by CLOCK–SIRT1. Science 324, 654–657 (2009). References 81 and 82 make up work that defines a feedback loop linking NAD+ biosynthesis to circadian oscillation.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  83. Libert, S., Bonkowski, M. S., Pointer, K., Pletcher, S. D. & Guarente, L. Deviation of innate circadian period from 24 h reduces longevity in mice. Aging Cell 11, 794–800 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Brown, S. A. et al. PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator. Science 308, 693–696 (2005).

    ADS  CAS  PubMed  Google Scholar 

  85. Etchegaray, J. P. et al. The polycomb group protein EZH2 is required for mammalian circadian clock function. J. Biol. Chem. 281, 21209–21215 (2006).

    CAS  PubMed  Google Scholar 

  86. Katada, S. & Sassone-Corsi, P. The histone methyltransferase MLL1 permits the oscillation of circadian gene expression. Nature Struct. Mol. Biol. 17, 1414–1421 (2010).

    CAS  Google Scholar 

  87. Ripperger, J. A. & Schibler, U. Rhythmic CLOCK–BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Nature Genet. 38, 369–374 (2006).

    CAS  PubMed  Google Scholar 

  88. Jones, M. A. et al. Jumonji domain protein JMJD5 functions in both the plant and human circadian systems. Proc. Natl Acad. Sci. USA 107, 21623–21628 (2010).

    ADS  CAS  PubMed  Google Scholar 

  89. DiTacchio, L. et al. Histone lysine demethylase JARID1a activates CLOCK–BMAL1 and influences the circadian clock. Science 333, 1881–1885 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tsukada, Y. et al. Histone demethylation by a family of JmjC domain-containing proteins. Nature 439, 811–816 (2006).

    ADS  CAS  PubMed  Google Scholar 

  91. Zhang, Q., Piston, D. W. & Goodman, R. H. Regulation of corepressor function by nuclear NADH. Science 295, 1895–1897 (2002).

    ADS  CAS  PubMed  Google Scholar 

  92. Xu, Y. et al. Modeling of a human circadian mutation yields insights into clock regulation by PER2. Cell 128, 59–70 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Dupuis, J. et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nature Genet. 42, 105–116 (2010).

    CAS  PubMed  Google Scholar 

  94. Prokopenko, I. et al. Variants in MTNR1B influence fasting glucose levels. Nature Genet. 41, 77–81 (2009).

    CAS  PubMed  Google Scholar 

  95. Lyssenko, V. et al. Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion. Nature Genet. 41, 82–88 (2009).

    CAS  PubMed  Google Scholar 

  96. Picinato, M. C., Haber, E. P., Carpinelli, A. R. & Cipolla-Neto, J. Daily rhythm of glucose-induced insulin secretion by isolated islets from intact and pinealectomized rat. J. Pineal Res. 33, 172–177 (2002).

    CAS  PubMed  Google Scholar 

  97. Williams, S. R., Zies, D., Mullegama, S. V., Grotewiel, M. S. & Elsea, S. H. Smith–Magenis syndrome results in disruption of CLOCK gene transcription and reveals an integral role for RAI1 in the maintenance of circadian rhythmicity. Am. J. Hum. Genet. 90, 941–949 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Pan, A., Schernhammer, E. S., Sun, Q. & Hu, F. B. Rotating night shift work and risk of type 2 diabetes: two prospective cohort studies in women. PLoS Med. 8, e1001141 (2011).

    PubMed  PubMed Central  Google Scholar 

  99. Knutson, K. L., Van Cauter, E., Zee, P., Liu, K. & Lauderdale, D. S. Cross-sectional associations between measures of sleep and markers of glucose metabolism among subjects with and without diabetes: the Coronary Artery Risk Development in Young Adults (CARDIA) Sleep Study. Diabetes Care 34, 1171–1176 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Roenneberg, T., Allebrandt, K. V., Merrow, M. & Vetter, C. Social jetlag and obesity. Curr. Biol. 22, 939–943 (2012).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I wish to thank G. Barish, K. Moynihan Ramsey and the anonymous reviewers for comments on the manuscript, as well as D. Levine and B. Marcheva for their help with the figures. I also thank my fellow time travellers, R. Allada, J. Takahashi and F. Turek, for their collegiality and discussions. Work towards this manuscript was supported by grants from the NIH Diabetes and Digestive and Kidney Diseases (R01DK090625), and Heart, Lung and Blood (R01HL097817) Institutes, National Institute on Aging (P01AG011412), the Chicago Biomedical Consortium Searle Funds, the American Diabetes Association (1-09-RA-07), the Juvenile Diabetes Research Foundation (1-2008-114) and the University of Chicago Diabetes Research and Training Center (P60 DK020595).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Bass.

Ethics declarations

Competing interests

J.B. is a member of the scientific advisory board of ReSet Therapeutics and has received support from Amylin Pharmaceuticals.

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bass, J. Circadian topology of metabolism. Nature 491, 348–356 (2012). https://doi.org/10.1038/nature11704

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11704

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing