Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The Josephson heat interferometer


The Josephson effect1 is perhaps the prototypical manifestation of macroscopic phase coherence, and forms the basis of a widely used electronic interferometer—the superconducting quantum interference device2 (SQUID). In 1965, Maki and Griffin predicted3 that the thermal current through a temperature-biased Josephson tunnel junction coupling two superconductors should be a stationary periodic function of the quantum phase difference between the superconductors: a temperature-biased SQUID should therefore allow heat currents to interfere4,5, resulting in a thermal version of the electric Josephson interferometer. This phase-dependent mechanism of thermal transport has been the subject of much discussion4,6,7,8 but, surprisingly, has yet to be realized experimentally. Here we investigate heat exchange between two normal metal electrodes kept at different temperatures and tunnel-coupled to each other through a thermal ‘modulator’ (ref. 5) in the form of a direct-current SQUID. We find that heat transport in the system is phase dependent, in agreement with the original prediction. Our Josephson heat interferometer yields magnetic-flux-dependent temperature oscillations of up to 21 millikelvin in amplitude, and provides a flux-to-temperature transfer coefficient exceeding 60 millikelvin per flux quantum at 235 millikelvin. In addition to confirming the existence of a phase-dependent thermal current unique to Josephson junctions, our results point the way towards the phase-coherent manipulation of heat in solid-state nanocircuits.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Josephson heat interferometer.
Figure 2: Behaviour of the heat interferometer at 235 mK.
Figure 3: Behaviour of the heat interferometer at different bath temperatures.


  1. 1

    Josephson, B. D. Possible new effects in superconductive tunneling. Phys. Lett. 1, 251–253 (1962)

    ADS  Article  Google Scholar 

  2. 2

    Clarke J., Braginski A. I., eds. The SQUID Handbook (Wiley-VCH, 2004)

  3. 3

    Maki, K. & Griffin, A. Entropy transport between two superconductors by electron tunneling. Phys. Rev. Lett. 15, 921–923 (1965)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Guttman, G. D., Ben-Jacob, E. & Bergman, D. J. Interference effect heat conductance in a Josephson junction and its detection in an rf SQUID. Phys. Rev. B 57, 2717–2719 (1998)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Giazotto, F. & Martínez-Pérez, M. J. Phase-controlled superconducting heat-flux quantum modulator. Appl. Phys. Lett. 101, 102601 (2012)

    ADS  Article  Google Scholar 

  6. 6

    Guttman, G. D., Nathanson, B., Ben-Jacob, E. & Bergman, D. J. Phase-dependent thermal transport in Josephson junctions. Phys. Rev. B 55, 3849–3855 (1997)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Zhao, E., Löfwander, T. & Sauls, J. A. Phase modulated thermal conductance of Josephson weak links. Phys. Rev. Lett. 91, 077003 (2003)

    ADS  Article  Google Scholar 

  8. 8

    Zhao, E., Löfwander, T. & Sauls, J. A. Heat transport through Josephson point contacts. Phys. Rev. B 69, 134503 (2004)

    ADS  Article  Google Scholar 

  9. 9

    Giazotto, F., Heikkilä, T. T., Luukanen, A., Savin, A. M. & Pekola, J. P. Opportunities for mesoscopics in thermometry and refrigeration: physics and applications. Rev. Mod. Phys. 78, 217–274 (2006)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Tinkham, M. Introduction to Superconductivity 2nd edn (McGraw-Hill, 1996)

    Google Scholar 

  11. 11

    Quaranta, O., Spathis, P., Beltram, F. & Giazotto, F. Cooling electrons from 1 K to 0.4 K with V-based nanorefrigerators. Appl. Phys. Lett. 98, 032501 (2011)

    ADS  Article  Google Scholar 

  12. 12

    Nahum, M. & Martinis, J. M. Ultrasensitive-hot-electron microbolometer. Appl. Phys. Lett. 63, 3075–3077 (1993)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Roukes, M. L., Freeman, M. R., Germain, R. S., Richardson, R. C. & Ketchen, M. B. Hot electrons and energy transport in metals at millikelvin temperatures. Phys. Rev. Lett. 55, 422–425 (1985)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Wellstood, F. C., Urbina, C. & Clarke, J. Hot-electron effects in metals. Phys. Rev. B 49, 5942–5955 (1994)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Schmidt, D. R., Schoelkopf, R. J. & Cleland, A. N. Photon-mediated thermal relaxation of electrons in nanostructures. Phys. Rev. Lett. 93, 045901 (2004)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Meschke, M., Guichard, W. & Pekola, J. P. Single-mode heat conduction by photons. Nature 444, 187–190 (2006)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Timofeev, A. V., Helle, M., Meschke, M., Möttönen, M. & Pekola, J. P. Electronic refrigeration at the quantum limit. Phys. Rev. Lett. 102, 200801 (2009)

    ADS  Article  Google Scholar 

  18. 18

    Peltonen, J. T. et al. Thermal conductance by the inverse proximity effect in a superconductor. Phys. Rev. Lett. 105, 097004 (2010)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Pascal, L. M. A., Courtois, H. & Hekking, F. W. J. Circuit approach to photonic heat transport. Phys. Rev. B 83, 125113 (2011)

    ADS  Article  Google Scholar 

  20. 20

    Timofeev, A. V. et al. Recombination-limited energy relaxation in a Bardeen-Cooper-Schrieffer superconductor. Phys. Rev. Lett. 102, 017003 (2009)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Dubi, Y. & Di Ventra, M. Heat flow and thermoelectricity in atomic and molecular junctions. Rev. Mod. Phys. 83, 131–155 (2011)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Ojanen, T. & Jauho, A.-P. Mesocopic photon heat transistor. Phys. Rev. Lett. 100, 155902 (2008)

    ADS  Article  Google Scholar 

  23. 23

    Ruokola, T., Ojanen, T. & Jauho, A.-P. Thermal rectification in nonlinear quantum circuits. Phys. Rev. B 79, 144306 (2009)

    ADS  Article  Google Scholar 

  24. 24

    Ryazanov, T. T. & Schmidt, V. V. Observation of thermal electromotive force oscillations versus magnetic vector potential field in superconducting loop with two Josephson SNS junctions. Solid State Commun. 42, 733–735 (1982)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Panaitov, G. I., Ryazanov, V. V. & Schmidt, V. V. Thermoelectric ac Josephson effect in SNS junctions. Phys. Lett. 100, 301–303 (1984)

    Article  Google Scholar 

Download references


We thank F. Taddei for discussions and for a careful reading of the manuscript. We also thank C. Altimiras, C. W. J. Beenakker, M. Di Ventra, T. T. Heikkilä, M. A. Laakso, F. Portier and P. Spathis for comments, and the EC FP7 programme number 228464 “Microkelvin” for partial financial support.

Author information




F.G. conceived and designed the experiment, performed and analysed the measurements, and developed the theoretical model. M.J.M.-P. fabricated the samples, contributed to the measurements, and analysed the data. F.G. wrote the manuscript with input from M.J.M.-P.

Corresponding author

Correspondence to Francesco Giazotto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Giazotto, F., Martínez-Pérez, M. The Josephson heat interferometer. Nature 492, 401–405 (2012).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing