Analysis of 6,515 exomes reveals the recent origin of most human protein-coding variants

A Corrigendum to this article was published on 13 March 2013


Establishing the age of each mutation segregating in contemporary human populations is important to fully understand our evolutionary history1,2 and will help to facilitate the development of new approaches for disease-gene discovery3. Large-scale surveys of human genetic variation have reported signatures of recent explosive population growth4,5,6, notable for an excess of rare genetic variants, suggesting that many mutations arose recently. To more quantitatively assess the distribution of mutation ages, we resequenced 15,336 genes in 6,515 individuals of European American and African American ancestry and inferred the age of 1,146,401 autosomal single nucleotide variants (SNVs). We estimate that approximately 73% of all protein-coding SNVs and approximately 86% of SNVs predicted to be deleterious arose in the past 5,000–10,000 years. The average age of deleterious SNVs varied significantly across molecular pathways, and disease genes contained a significantly higher proportion of recently arisen deleterious SNVs than other genes. Furthermore, European Americans had an excess of deleterious variants in essential and Mendelian disease genes compared to African Americans, consistent with weaker purifying selection due to the Out-of-Africa dispersal. Our results better delimit the historical details of human protein-coding variation, show the profound effect of recent human history on the burden of deleterious SNVs segregating in contemporary populations, and provide important practical information that can be used to prioritize variants in disease-gene discovery.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The vast majority of protein-coding single-nucleotide variants arose recently.
Figure 2: Characteristics of allele age for deleterious single-nucleotide variants.
Figure 3: Distribution of deleterious single-nucleotide variants across the exome before and after recent accelerated population growth.
Figure 4: Heterogeneity of allele age across genes and pathways.

Accession codes

Data deposits

Filtered sets of annotated variants and their allele frequencies are available at ( and genotypes and phenotypes from a large subset of individuals are also available through dbGaP ( using the following accession information: NHLBI GO-ESP: Women’s Health Initiative Exome Sequencing Project (WHI) – WHISP, WHISP_Subject_Phenotypes, pht002246.v2.p2, phs000281.v2.p2; NHLBI GO-ESP: Heart Cohorts Exome Sequencing Project (JHS), ESP_HeartGO_JHS_LDLandEOMI_Subject_Phenotypes, pht002539.v1.p1, phs000402.v1.p1; NHLBI GO-ESP: Heart Cohorts Exome Sequencing Project (FHS), HeartGO_FHS_LDLandEOMI_PhenotypeDataFile, pht002476.v1.p1, phs000401.v1.p1; NHLBI GO-ESP: Heart Cohorts Exome Sequencing Project (CHS), HeartGO_CHS_LDL_PhenotypeDataFile, pht002536.v1.p1, phs000400.v1.p1; NHLBI GO-ESP: Heart Cohorts Exome Sequencing Project (ARIC), ESP_ARIC_LDLandEOMI_Sample, pht002466.v1.p1, phs000398.v1.p1;NHLBIGO-ESP: Lung Cohorts Exome Sequencing Project (Cystic Fibrosis), ESP_LungGO_CF_PA_Culture_Data, pht002227.v1.p1, phs000254.v1.p1; NHLBI GO-ESP: Early-Onset Myocardial Infarction (Broad EOMI), ESP_Broad_EOMI_Subject_Phenotypes, pht001437.v1.p1, phs000279.v1.p1; NHLBI GO-ESP: Lung Cohorts Exome Sequencing Project (Pulmonary Arterial Hypertension), PAH_Subject_Phenotypes_Baseline_Measures, pht002277.v1.p1, phs000290.v1.p1; NHLBI GO-ESP: Lung Cohorts Exome Sequencing Project (Lung Health Study of Chronic Obstructive Pulmonary Disease), LHS_COPD_Subject_Phenotypes_Baseline_Measures, pht002272.v1.p1, phs000291.v1.p1.


  1. 1

    Kimura, M. & Ota, T. The age of a neutral mutant persisting in a finite population. Genetics 75, 199–212 (1973)

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Tishkoff, S. A. & Verrelli, B. C. Patterns of human genetic diversity: implications for human evolutionary history and disease. Annu. Rev. Genomics Hum. Genet. 4, 293–340 (2003)

    CAS  Article  Google Scholar 

  3. 3

    Slatkin, M. & Rannala, B. Estimating allele age. Annu. Rev. Genomics Hum. Genet. 1, 225–249 (2000)

    CAS  Article  Google Scholar 

  4. 4

    Keinan, A. & Clark, A. G. Recent explosive human population growth has resulted in an excess of rare genetic variants. Science 336, 740–743 (2012)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Nelson, M. R. et al. An abundance of rare functional variants in 202 drug target genes sequenced in 14,002 people. Science 337, 100–104 (2012)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Tennessen, J. A. et al. Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science 337, 64–69 (2012)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Griffiths, R. C. & Tavaré, S. The age of a mutation in a general coalescent tree. Commun. Stat. Stoch. Models 14, 273–295 (1998)

    MathSciNet  Article  Google Scholar 

  8. 8

    Coventry, A. et al. Deep resequencing reveals excess rare recent variants consistent with explosive population growth. Nature Commun. 1, 131 (2010)

    ADS  Article  Google Scholar 

  9. 9

    Gravel, S. et al. Demographic history and rare allele sharing among human populations. Proc. Natl Acad. Sci. USA 108, 11983–11988 (2011)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Gutenkunst, R. N., Hernandez, R. D., Williamson, S. H. & Bustamante, C. D. Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. PLoS Genet. 5, e1000695 (2009)

    Article  Google Scholar 

  11. 11

    Schaffner, S. F. et al. Calibrating a coalescent simulation of human genome sequence variation. Genome Res. 15, 1576–1583 (2005)

    CAS  Article  Google Scholar 

  12. 12

    Gibson, G. Rare and common variants: twenty arguments. Nature Rev. Genet. 13, 135–145 (2012)

    CAS  Article  Google Scholar 

  13. 13

    Kumar, P., Henikoff, S. & Ng, P. C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nature Protocols 4, 1073–1081 (2009)

    CAS  Article  Google Scholar 

  14. 14

    Adzhubei, I. A. et al. A method and server for predicting damaging missense mutations. Nature Methods 7, 248–249 (2010)

    CAS  Article  Google Scholar 

  15. 15

    Chun, S. & Fay, J. C. Identification of deleterious mutations within three human genomes. Genome Res. 19, 1553–1561 (2009)

    CAS  Article  Google Scholar 

  16. 16

    Schwarz, J. M., Rodelsperger, C., Schuelke, M. & Seelow, D. MutationTaster evaluates disease-causing potential of sequence alterations. Nature Methods 7, 575–576 (2010)

    CAS  Article  Google Scholar 

  17. 17

    Davydov, E. V. et al. Identifying a high fraction of the human genome to be under selective constraint using GERP++. PLOS Comput. Biol. 6, e1001025 (2010)

    Article  Google Scholar 

  18. 18

    Pollard, K. S., Hubisz, M. J., Rosenbloom, K. R. & Siepel, A. Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res. 20, 110–121 (2010)

    CAS  Article  Google Scholar 

  19. 19

    Becker, K. G., Barnes, K. C., Bright, T. J. & Wang, S. A. The genetic association database. Nature Genet. 36, 431–432 (2004)

    CAS  Article  Google Scholar 

  20. 20

    Pyun, J. A., Cha, D. H. & Kwack, K. LAMC1 gene is associated with premature ovarian failure. Maturitas 71, 402–406 (2012)

    CAS  Article  Google Scholar 

  21. 21

    Liu, Q. et al. Amyloid precursor protein regulates brain apolipoprotein E and cholesterol metabolism through lipoprotein receptor LRP1. Neuron 56, 66–78 (2007)

    CAS  Article  Google Scholar 

  22. 22

    Jia, E. Z. et al. Association of the mutation for the human carboxypeptidase E gene exon 4 with the severity of coronary artery atherosclerosis. Mol. Biol. Rep. 36, 245–254 (2009)

    CAS  Article  Google Scholar 

  23. 23

    Valdmanis, P. N. et al. Mutations in the KIAA0196 gene at the SPG8 locus cause hereditary spastic paraplegia. Am. J. Hum. Genet. 80, 152–161 (2007)

    CAS  Article  Google Scholar 

  24. 24

    Blekhman, R. et al. Natural selection on genes that underlie human disease susceptibility. Curr. Biol. 18, 883–889 (2008)

    CAS  Article  Google Scholar 

  25. 25

    Liao, B. Y., Scott, N. M. & Zhang, J. Impacts of gene essentiality, expression pattern, and gene compactness on the evolutionary rate of mammalian proteins. Mol. Biol. Evol. 23, 2072–2080 (2006)

    CAS  Article  Google Scholar 

  26. 26

    Lohmueller, K. E. et al. Proportionally more deleterious genetic variation in European than in African populations. Nature 451, 994–997 (2008)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Hawks, J., Wang, E. T., Cochran, G. M., Harpending, H. C. & Moyzis, R. K. Recent acceleration of human adaptive evolution. Proc. Natl Acad. Sci. USA 104, 20753–20758 (2007)

    ADS  CAS  Article  Google Scholar 

Download references


We acknowledge the support of the National Heart, Lung and Blood Institute (NHLBI), the contributions of the research institutions that participated in this study, the study investigators, field staff and study participants who created this resource for biomedical research, and the Population Genetics Project Team of the NHLBI. We thank J. Wilson and R. Do for critical feedback on the manuscript. Funding for the GO (Grand Opportunity) Exome Sequencing Project was provided by NHLBI grants RC2 HL-103010 (Heart GO), RC2 HL-102923 (Lung GO) and RC2 HL-102924 (WHISP). The exome sequencing was was supported by NHLBI grants RC2 HL-102925 (Broad GO) and RC2 HL-102926 (Seattle GO).

Author information




W.F. and J.M.A. conceived the analyses. D.A.N., S.G., M.J.R. and D.A. oversaw data generation and quality control. G.J., H.M.K. and G.A. developed algorithms and identified SNVs from the sequencing data. W.F. carried out the majority of analyses with contributions from T.D.O. W.F., M.J.B., J.S. and J.M.A. analysed the data and wrote the manuscript with contributions from all authors. W.F., T.D.O., S.M.L., J.S., M.J.R., D.A.N., M.J.B. and J.M.A. are members of the Seattle Grand Opportunity (GO) group and G.J., H.M.K., G.A., S.G. and D.A. are members of the Broad GO group, which are both sub-groups of the NHLBI Exome Sequencing Project (ESP).

Corresponding authors

Correspondence to Wenqing Fu or Joshua M. Akey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, Supplementary References, Supplementary Tables 1-4 and Supplementary Figures 1-15 (see Table of Contents for more details). (PDF 3066 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fu, W., O’Connor, T., Jun, G. et al. Analysis of 6,515 exomes reveals the recent origin of most human protein-coding variants. Nature 493, 216–220 (2013).

Download citation

Further reading

  • African genetic diversity and adaptation inform a precision medicine agenda

    • Luisa Pereira
    • , Leon Mutesa
    • , Paulina Tindana
    •  & Michèle Ramsay

    Nature Reviews Genetics (2021)

  • Genome-wide mutational signatures revealed distinct developmental paths for human B cell lymphomas

    • Xiaofei Ye
    • , Weicheng Ren
    • , Dongbing Liu
    • , Xiaobo Li
    • , Wei Li
    • , Xianhuo Wang
    • , Fei-Long Meng
    • , Leng-Siew Yeap
    • , Yong Hou
    • , Shida Zhu
    • , Rafael Casellas
    • , Huilai Zhang
    • , Kui Wu
    •  & Qiang Pan-Hammarström

    Journal of Experimental Medicine (2021)

  • The patterns of deleterious mutations during the domestication of soybean

    • Myung-Shin Kim
    • , Roberto Lozano
    • , Ji Hong Kim
    • , Dong Nyuk Bae
    • , Sang-Tae Kim
    • , Jung-Ho Park
    • , Man Soo Choi
    • , Jaehyun Kim
    • , Hyun-Choong Ok
    • , Soo-Kwon Park
    • , Michael A. Gore
    • , Jung-Kyung Moon
    •  & Soon-Chun Jeong

    Nature Communications (2021)

  • CSVS, a crowdsourcing database of the Spanish population genetic variability

    • María Peña-Chilet
    • , Gema Roldán
    • , Javier Perez-Florido
    • , Francisco M Ortuño
    • , Rosario Carmona
    • , Virginia Aquino
    • , Daniel Lopez-Lopez
    • , Carlos Loucera
    • , Jose L Fernandez-Rueda
    • , Asunción Gallego
    • , Francisco García-Garcia
    • , Anna González-Neira
    • , Guillermo Pita
    • , Rocío Núñez-Torres
    • , Javier Santoyo-López
    • , Carmen Ayuso
    • , Pablo Minguez
    • , Almudena Avila-Fernandez
    • , Marta Corton
    • , Miguel Ángel Moreno-Pelayo
    • , Matías Morin
    • , Alvaro Gallego-Martinez
    • , Jose A Lopez-Escamez
    • , Salud Borrego
    • , Guillermo Antiñolo
    • , Jorge Amigo
    • , Josefa Salgado-Garrido
    • , Sara Pasalodos-Sanchez
    • , Beatriz Morte
    • , Fátima Al-Shahrour
    • , Rafael Artuch
    • , Javier Benitez
    • , Luis Antonio Castaño
    • , Ignacio del Castillo
    • , Aitor Delmiro
    • , Carmina Espinos
    • , Roser González
    • , Daniel Grinberg
    • , Encarnación Guillén
    • , Pablo Lapunzina
    • , Esther Lopez
    • , Ramón Martí
    • , Montserrat Milá
    • , José Mª Millán
    • , Virginia Nunes
    • , Francesc Palau
    • , Belen Perez
    • , Luis Pérez Jurado
    • , Rosario Perona
    • , Aurora Pujol
    • , Feliciano Ramos
    • , Antonia Ribes
    • , Jordi Rosell
    • , Eulalia Rovira
    • , Jordi Surrallés
    • , Isabel Tejada
    • , Magdalena Ugarte
    • , Ángel Carracedo
    • , Ángel Alonso
    •  & Joaquín Dopazo

    Nucleic Acids Research (2021)

  • ATR-16 syndrome: mechanisms linking monosomy to phenotype

    • Christian Babbs
    • , Jill Brown
    • , Sharon W Horsley
    • , Joanne Slater
    • , Evie Maifoshie
    • , Shiwangini Kumar
    • , Paul Ooijevaar
    • , Marjolein Kriek
    • , Amanda Dixon-McIver
    • , Cornelis L Harteveld
    • , Jan Traeger-Synodinos
    • , Andrew O M Wilkie
    • , Douglas R Higgs
    •  & Veronica J Buckle

    Journal of Medical Genetics (2020)


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing