Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The global pattern of trace-element distributions in ocean floor basalts


The magmatic layers of the oceanic crust are created at constructive plate margins by partial melting of the mantle as it wells up. The chemistry of ocean floor basalts, the most accessible product of this magmatism, is studied for the insights it yields into the compositional heterogeneity of the mantle and its thermal structure. However, before eruption, parental magma compositions are modified at crustal pressures by a process that has usually been assumed to be fractional crystallization. Here we show that the global distributions of trace elements in ocean floor basalts describe a systematic pattern that cannot be explained by simple fractional crystallization alone, but is due to cycling of magma through the global ensemble of magma chambers. Variability in both major and incompatible trace-element contents about the average global pattern is due to fluctuations in the magma fluxes into and out of the chambers, and their depth, as well as to differences in the composition of the parental magmas.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Global trends in ocean floor basalt (OFB) glasses.
Figure 2: Homogeneous relations among minor elements (Na, Ti, K and P) and rare earth elements (REEs) in OFB glasses.
Figure 3: Systematic relations between intercepts at 10% MgO, slopes and variabilities in OFB glasses.
Figure 4: The global ensemble of replenished and tapped magma chambers.
Figure 5: Testing the model.


  1. Klein, E. M. in Treatise on Geochemistry Vol. 3, The Crust (ed. Rudnick, R. L. ) 433–463 (Pergamon, 2003)

    Book  Google Scholar 

  2. Klein, E. M. & Langmuir, C. H. Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. J. Geophys. Res. 92 (B8). 8089–8115 (1987)

    ADS  CAS  Article  Google Scholar 

  3. Langmuir, C. H., Klein, E. M. & Plank, T. in Mantle Flow and Melt Generation at Mid-Ocean Ridges (eds Morgan J. P., Blackman, D. K. & Sinton, J. M. ) 183–280 (Geophysical Monograph Series Vol. 7, 1, AGU, 1992)

    Google Scholar 

  4. McKenzie, D. & Bickle, M. J. The volume and composition of melt generated by extension of the lithosphere. J. Petrol. 29, 625–679 (1988)

    ADS  CAS  Article  Google Scholar 

  5. Herzberg, C. Partial crystallization of mid-ocean ridge basalts in the crust and mantle. J. Petrol. 45, 2389–2405 (2004)

    ADS  CAS  Article  Google Scholar 

  6. Michael, P. J. & Cornell, W. C. Influence of spreading rate and magma supply on crystallization and assimilation beneath mid-ocean ridges: evidence from chlorine and major element chemistry of mid-ocean ridge basalts. J. Geophys. Res. 103, 18325–18356 (1998)

    ADS  CAS  Article  Google Scholar 

  7. O'Hara, M. J. Are ocean floor basalts primary magmas? Nature 220, 683–686 (1968)

    ADS  Article  Google Scholar 

  8. Dungan, M. A. & Rhodes, J. M. Residual glasses and melt inclusions in basalts from DSDP Legs 45 and 46: evidence for magma mixing. Contrib. Mineral. Petrol. 67, 417–431 (1978)

    ADS  CAS  Article  Google Scholar 

  9. White, W. M. & Bryan, W. B. Sr-isotope, K, Rb, Cs, Sr, Ba, and rare-earth geochemistry of basalts from the FAMOUS area. Geol. Soc. Am. Bull. 88, 571–576 (1977)

    ADS  CAS  Article  Google Scholar 

  10. Jenner, F. E., O'Neill, H. & St C. Analysis of 60 elements in 616 ocean floor basaltic glasses. Geochem. Geophys. Geosyst.. 13, Q02005, (2012)

  11. Arevalo, R. & McDonough, W. F. Chemical variations and regional diversity observed in MORB. Chem. Geol. 271, 70–85 (2010)

    ADS  CAS  Article  Google Scholar 

  12. Melson, W. G., O'Hearn, T. & Jarosewich, E. A data brief on the Smithsonian abyssal volcanic glass data file. Geochem. Geophys. Geosyst. 3, 1–11 (2002)

    Article  Google Scholar 

  13. Wood, B. J. & Blundy, J. D. in Treatise on Geochemistry Vol. 2, The Mantle and Core (ed. Carlson, R. W. ) 395–424 (Elsevier, 2003)

    Book  Google Scholar 

  14. Hofmann, A. W. Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet. Sci. Lett. 90, 297–314 (1988)

    ADS  CAS  Article  Google Scholar 

  15. Schiano, P., Allègre, C. J., Dupré, B., Lewin, E. & Joron, J.-L. Variability of trace elements in basaltic suites. Earth Planet. Sci. Lett. 119, 37–51 (1993)

    ADS  CAS  Article  Google Scholar 

  16. Kamenetsky, V. S. & Eggins, S. M. Systematics of metals, metalloids, and volatiles in MORB melts: effects of partial melting, crystal fractionation and degassing (a case study of Macquarie Island glasses). Chem. Geol. 302–303, 76–86 (2012)

    ADS  Article  CAS  Google Scholar 

  17. Palme, H., O'Neill, H. & St C. in Treatise on Geochemistry Vol. 2, The Mantle and Core (ed. Carlson, R. W. ) 1–38 (Elsevier, 2003)

    Google Scholar 

  18. Kendrick, M. A., Kamenetsky, V. S., Phillips, D. & Honda, M. The behaviour of halogens (Cl, Br, I) in enriched mid-ocean ridge basalts and their distribution on Earth. Geochim. Cosmochim. Acta 81, 82–93 (2012)

    ADS  CAS  Article  Google Scholar 

  19. O'Hara, M. J. Geochemical evolution during fractional crystallisation of a periodically refilled magma chamber. Nature 266, 503–507 (1977)

    ADS  CAS  Article  Google Scholar 

  20. O'Hara, M. J. & Mathews, R. E. Geochemical evolution in an advancing, periodically replenished, periodically tapped, continuously fractionated magma chamber. J. Geol. Soc. Lond. 138, 237–277 (1981)

    CAS  Article  Google Scholar 

  21. Albaréde, F. Regime and trace-element evolution of open magma chambers. Nature 318, 356–358 (1985)

    ADS  Article  Google Scholar 

  22. Falloon, T. J., Danyushevsky, L. V., Ariskin, A., Green, D. H. & Ford, C. E. The application of olivine geothermometry to infer crystallisation temperatures of parental liquids: implications for the temperatures of MORB magmas. Chem. Geol. 241, 207–233 (2007)

    ADS  CAS  Article  Google Scholar 

  23. Hess, P. C. in Mantle Flow and Melt Generation at Mid-Ocean Ridges (eds Morgan, J. P., Blackman, D. K. & Sinton, J. M.) 67–102 (Geophysical Monograph Series Vol. 71, AGU, 1992)

    Google Scholar 

  24. Beattie, P., Ford, C. & Russell, D. Partition coefficients for olivine-melt and orthopyroxene-melt systems. Contrib. Mineral. Petrol. 109, 212–224 (1991)

    ADS  CAS  Article  Google Scholar 

  25. Bindeman, I. N., Davis, A. M. & Drake, M. J. Ion microprobe study of plagioclase-basalt partition experiments at natural concentration levels of trace elements. Geochim. Cosmochim. Acta 62, 1175–1193 (1998)

    ADS  CAS  Article  Google Scholar 

  26. Wood, B. J. & Blundy, J. D. A predictive model for rare earth element partitioning between clinopyroxene and anhydrous silicate melt. Contrib. Mineral. Petrol. 129, 166–181 (1997)

    ADS  CAS  Article  Google Scholar 

  27. Falloon, T. J., Green, D. H., Danyushevsky, L. V. & McNeill, A. W. The composition of near-solidus partial melts of fertile peridotite at 1 and 1·5 GPa: implications for the petrogenesis of MORB. J. Petrol. 49, 591–613 (2008)

    ADS  CAS  Article  Google Scholar 

  28. Aigner-Torres, M., Blundy, J., Ulmer, P. & Pettke, T. Laser ablation ICPMS study of trace element partitioning between plagioclase and basaltic melts: an experimental approach. Contrib. Mineral. Petrol. 153, 647–667 (2007)

    ADS  CAS  Article  Google Scholar 

  29. Leeman, W. P. Partitioning of Pb between volcanic glass and coexisting sanidine and plagioclase feldspars. Geochim. Cosmochim. Acta 43, 171–175 (1979)

    ADS  CAS  Article  Google Scholar 

  30. Jenner, F. E., O'Neill, H., St C., Arculus, R. J. & Mavrogenes, J. A. The magnetite crisis in the evolution of arc-related magmas and the initial concentration of Au, Ag, and Cu. J. Petrol. 51, 2445–2464 (2010)

    ADS  CAS  Article  Google Scholar 

  31. Hart, S. R. & Gaetani, G. A. Mantle Pb paradoxes: the sulfide solution. Contrib. Mineral. Petrol. 152, 295–308 (2006)

    ADS  CAS  Article  Google Scholar 

  32. Dick, H. J. B. & Bullen, T. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib. Mineral. Petrol. 86, 54–76 (1984)

    ADS  CAS  Article  Google Scholar 

  33. Rubin, K. H. & Sinton, J. M. Inferences on mid-ocean ridge thermal and magmatic structure from MORB compositions. Earth Planet. Sci. Lett. 260, 257–276 (2007)

    ADS  CAS  Article  Google Scholar 

  34. Shen, Y. & Forsyth, D. W. Geochemical constraints on initial and final depths of melting beneath mid-ocean ridges. J. Geophys. Res. 100, 2211–2237 (1995)

    ADS  CAS  Article  Google Scholar 

  35. Hofmann, A. W. in Treatise on Geochemistry Vol. 2, The Mantle and Core (ed. Carlson, R. W. ) 61–101 (Elsevier, 2003)

    Google Scholar 

  36. Goss, A. R. et al. Geochemistry of lavas from the 2005–2006 eruption at the East Pacific Rise, 9°46'N-9°56'N: implications for ridge crest plumbing and decadal changes in magma chamber compositions. Geochem. Geophys. Geosyst.. 11, Q05T09, (2010)

    Article  CAS  Google Scholar 

  37. Sims, K. W. W. et al. Chemical and isotopic constraints on the generation and transport of magma beneath the East Pacific Rise. Geochim. Cosmochim. Acta 66, 3481–3504 (2002)

    ADS  CAS  Article  Google Scholar 

  38. Rannou, E., Caroff, M. & Cordier, C. A geochemical approach to model periodically replenished magma chambers: does oscillatory supply account for the magmatic evolution of EPR 17–19°S? Geochim. Cosmochim. Acta 70, 4783–4796 (2006)

    ADS  CAS  Article  Google Scholar 

  39. Cordier, C. Caroff, M. & Rannou, E. Timescale of open-reservoir evolution beneath the south Cleft segment, Juan de Fuca ridge. Mineral. Petrol. 104, 1–14 (2012)

    ADS  CAS  Article  Google Scholar 

  40. Walker, D., Shibata, T. & DeLong, S. Abyssal tholeiites from the Oceanographer fracture zone. Contrib. Mineral. Petrol. 70, 111–125 (1979)

    ADS  CAS  Article  Google Scholar 

  41. Elliott, T. & Spiegelman, M. in Treatise on Geochemistry Vol. 2, The Mantle and Core (ed. Carlson, R. W. ) 465–510 (Elsevier, 2003)

    Book  Google Scholar 

  42. Danyushevsky, L. V. & Plechov, P. Petrolog3: integrated software for modeling crystallization processes. Geochem. Geophys. Geosyst.. 12, Q07021, (2011)

  43. Danyushevsky, L. V. The effect of small amounts of H2O on crystallisation of mid-ocean ridge and backarc basin magmas. J. Volcanol. Geotherm. Res. 110, 265–280 (2001)

    ADS  CAS  Article  Google Scholar 

  44. Cottrell, E. & Kelley, K. A. The oxidation state of Fe in MORB glasses and the oxygen fugacity of the upper mantle. Earth Planet. Sci. Lett. 305, 270–282 (2011)

    ADS  CAS  Article  Google Scholar 

  45. Jenner, F. E., O'Neill, H. & St C. Major and trace analysis of basaltic glasses by laser-ablation ICP-MS. Geochem. Geophys. Geosyst.. 13, Q03003, (2012)

Download references


This work was funded by the Australian National University. I. Campbell, R. Arculus, S. Turner, R. Carlson and E. Hauri are thanked for comments on earlier versions of this manuscript, and the final presentation has benefited from reviews by A. Hofmann and W. McDonough.

Author information

Authors and Affiliations



Both authors contributed extensively to the work presented in this paper.

Corresponding author

Correspondence to Hugh St C. O’Neill.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Table 1. (PDF 163 kb)

Supplementary Data

This file contains the data used to construct figures 1-4 in the main paper. (XLS 79 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

St C. O’Neill, H., Jenner, F. The global pattern of trace-element distributions in ocean floor basalts. Nature 491, 698–704 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing