Abstract
Anaemia is a chief determinant of global ill health, contributing to cognitive impairment, growth retardation and impaired physical capacity. To understand further the genetic factors influencing red blood cells, we carried out a genome-wide association study of haemoglobin concentration and related parameters in up to 135,367 individuals. Here we identify 75 independent genetic loci associated with one or more red blood cell phenotypes at P < 10−8, which together explain 4–9% of the phenotypic variance per trait. Using expression quantitative trait loci and bioinformatic strategies, we identify 121 candidate genes enriched in functions relevant to red blood cell biology. The candidate genes are expressed preferentially in red blood cell precursors, and 43 have haematopoietic phenotypes in Mus musculus or Drosophila melanogaster. Through open-chromatin and coding-variant analyses we identify potential causal genetic variants at 41 loci. Our findings provide extensive new insights into genetic mechanisms and biological pathways controlling red blood cell formation and function.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Accession codes
Data deposits
Summary statistics from the genome-wide association study are available from the European Genome‐Phenome Archive (EGA, http://www.ebi.ac.uk/ ega) under accession number EGAS00000000132.
Change history
19 December 2012
Footnote symbols in the Table 1 legend were corrected.
References
Chambers, J. C. et al. Genome-wide association study identifies variants in TMPRSS6 associated with hemoglobin levels. Nature Genet. 41, 1170–1172 (2009)
Ganesh, S. K. et al. Multiple loci influence erythrocyte phenotypes in the CHARGE Consortium. Nature Genet. 41, 1191–1198 (2009)
Soranzo, N. et al. A genome-wide meta-analysis identifies 22 loci associated with eight hematological parameters in the HaemGen consortium. Nature Genet. 41, 1182–1190 (2009)
Kamatani, Y. et al. Genome-wide association study of hematological and biochemical traits in a Japanese population. Nature Genet. 42, 210–215 (2010)
Ding, K. et al. Genetic loci implicated in erythroid differentiation and cell cycle regulation are associated with red blood cell traits. Mayo Clin. Proc. 87, 461–474 (2012)
Pe’er, I., Yelensky, R., Altshuler, D. & Daly, M. J. Estimation of the multiple testing burden for genomewide association studies of nearly all common variants. Genet. Epidemiol. 32, 381–385 (2008)
Nyholt, D. R. A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other. Am. J. Hum. Genet. 74, 765–769 (2004)
Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nature Genet. 44, 369–375 (2012)
Raychaudhuri, S. et al. Identifying relationships among genomic disease regions: predicting genes at pathogenic SNP associations and rare deletions. PLoS Genet. 5, e1000534 (2009)
An, X. & Mohandas, N. Disorders of red cell membrane. Br. J. Haematol. 141, 367–375 (2008)
van Wijk, R., Rijksen, G., Huizinga, E. G., Nieuwenhuis, H. K. & van Solinge, W. W. HK Utrecht: missense mutation in the active site of human hexokinase associated with hexokinase deficiency and severe nonspherocytic hemolytic anemia. Blood 101, 345–347 (2003)
Camaschella, C. & Poggiali, E. Inherited disorders of iron metabolism. Curr. Opin. Pediatr. 23, 14–20 (2011)
Novershtern, N. et al. Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell 144, 296–309 (2011)
Gieger, C. et al. New gene functions in megakaryopoiesis and platelet formation. Nature 480, 201–208 (2011)
Paul, D. S. et al. Maps of open chromatin guide the functional follow-up of genome-wide association signals: application to hematological traits. PLoS Genet. 7, e1002139 (2011)
Forrester, W. C., Thompson, C., Elder, J. T. & Groudine, M. A developmentally stable chromatin structure in the human beta-globin gene cluster. Proc. Natl Acad. Sci. USA 83, 1359–1363 (1986)
Tuan, D., Solomon, W., Li, Q. & London, I. M. The “beta-like-globin” gene domain in human erythroid cells. Proc. Natl Acad. Sci. USA 82, 6384–6388 (1985)
Kowalczyk, M. S. et al. Intragenic enhancers act as alternative promoters. Mol. Cell 45, 447–458 (2012)
Baù, D. et al. The three-dimensional folding of the α-globin gene domain reveals formation of chromatin globules. Nature Struct. Mol. Biol. 18, 107–114 (2011)
Zsebo, K. M. et al. Stem cell factor is encoded at the Sl locus of the mouse and is the ligand for the c-kit tyrosine kinase receptor. Cell 63, 213–224 (1990)
Heissig, B. et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109, 625–637 (2002)
Kozar, K. et al. Mouse development and cell proliferation in the absence of D-cyclins. Cell 118, 477–491 (2004)
Dietzl, G. et al. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila . Nature 448, 151–156 (2007)
Clark, R. H. et al. Adaptor protein 3-dependent microtubule-mediated movement of lytic granules to the immunological synapse. Nature Immunol. 4, 1111–1120 (2003)
Berhane, S. et al. Adenovirus E1A interacts directly with, and regulates the level of expression of, the immunoproteasome component MECL1. Virology 421, 149–158 (2011)
Tiwari, S. & Weissman, A. M. Endoplasmic reticulum (ER)-associated degradation of T cell receptor subunits. Involvement of ER-associated ubiquitin-conjugating enzymes (E2s). J. Biol. Chem. 276, 16193–16200 (2001)
Fransen, K. et al. Analysis of SNPs with an effect on gene expression identifies UBE2L3 and BCL3 as potential new risk genes for Crohn’s disease. Hum. Mol. Genet. 19, 3482–3488 (2010)
Zhernakova, A. et al. Meta-analysis of genome-wide association studies in celiac disease and rheumatoid arthritis identifies fourteen non-HLA shared loci. PLoS Genet. 7, e1002004 (2011)
Das, S., Ghosh, R. & Maitra, U. Eukaryotic translation initiation factor 5 functions as a GTPase-activating protein. J. Biol. Chem. 276, 6720–6726 (2001)
Fenton, T. R. & Gout, I. T. Functions and regulation of the 70 kDa ribosomal S6 kinases. Int. J. Biochem. Cell Biol. 43, 47–59 (2011)
Scanlon, K. S., Yip, R., Schieve, L. A. & Cogswell, M. E. High and low hemoglobin levels during pregnancy: differential risks for preterm birth and small for gestational age. Obstet. Gynecol. 96, 741–748 (2000)
Shah, R. C., Buchman, A. S., Wilson, R. S., Leurgans, S. E. & Bennett, D. A. Hemoglobin level in older persons and incident Alzheimer disease: prospective cohort analysis. Neurology 77, 219–226 (2011)
Sabatine, M. S. et al. Association of hemoglobin levels with clinical outcomes in acute coronary syndromes. Circulation 111, 2042–2049 (2005)
Zakai, N. A. et al. A prospective study of anemia status, hemoglobin concentration, and mortality in an elderly cohort: the Cardiovascular Health Study. Arch. Intern. Med. 165, 2214–2220 (2005)
Galanello, R. et al. Amelioration of Sardinian β0 thalassemia by genetic modifiers. Blood 114, 3935–3937 (2009)
Boyle, A. P., Guinney, J., Crawford, G. E. & Furey, T. S. F-Seq: a feature density estimator for high-throughput sequence tags. Bioinformatics 24, 2537–2538 (2008)
Holm, H. et al. A rare variant in MYH6 is associated with high risk of sick sinus syndrome. Nature Genet. 43, 316–320 (2011)
Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011)
Dixon, A. L. et al. A genome-wide association study of global gene expression. Nature Genet. 39, 1202–1207 (2007)
Dubois, P. C. et al. Multiple common variants for celiac disease influencing immune gene expression. Nature Genet. 42, 295–302 (2010)
Anderson, R. J. et al. Reduced dependency on arteriography for penetrating extremity trauma: influence of wound location and noninvasive vascular studies. J. Trauma 30, 1059–1063 (1990)
Giresi, P. G. & Lieb, J. D. Isolation of active regulatory elements from eukaryotic chromatin using FAIRE (Formaldehyde Assisted Isolation of Regulatory Elements). Methods 48, 233–239 (2009)
Lunter, G. & Goodson, M. Stampy: a statistical algorithm for sensitive and fast mapping of Illumina sequence reads. Genome Res. 21, 936–939 (2011)
McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010)
Pickrell, J. K., Gaffney, D. J., Gilad, Y. & Pritchard, J. K. False positive peaks in ChIP-seq and other sequencing-based functional assays caused by unannotated high copy number regions. Bioinformatics 27, 2144–2146 (2011)
Vilella, A. J. et al. EnsemblCompara GeneTrees: complete, duplication-aware phylogenetic trees in vertebrates. Genome Res. 19, 327–335 (2009)
Goto, A. et al. A Drosophila haemocyte-specific protein, hemolectin, similar to human von Willebrand factor. Biochem. J. 359, 99–108 (2001)
Acknowledgements
A detailed list of acknowledgements is provided in the Supplementary Material.
Author information
Authors and Affiliations
Contributions
Study organisation: J.C.C., C.G., P.v.d.H., J.S.K., W.H.O. and N.S. Manuscript preparation: H.A., J.S.B., J.C.C., G.V.D., P.D., C.G., P.v.d.H., A.A.Hicks, J.S.K., I.M.-L., W.H.O., A.Radhakrishnan, A.Rendon, S.S., J.Sehmi, N.S., D.S.P., M.U., N.V. and W.Z. All authors reviewed and had the opportunity to comment on the manuscript. Data collection and analysis in the participating genome-wide association, replication and phenotype cohorts: ALSPAC: D.M.E., J.P.K., S.M.R., G.D.S; AMISH: Q.D.G., B.D.M., A.Parsa, A.R.S.; Beta-thalassaemia: F.A., F.D., P.Fortina, R.G, L.Perseu, A.Piga, S.S., M.U.; CBR: A.Attwood, J.D., S.F.G., H.L.-J., C.Moore, W.H.O., J.Sambrook; CoLAUS: F.B., J.S.B., M.H., P.V.; DeCODE: G.I.E., D.F.G., H.H., I.O., P.T.O., K.S., P.S., U.T.; DESIR: B.Balkau, C.D., P.Froguel, R.Sladek; EGCUT: T.E., K.F., A.M., E.M., A.S.; EPIC: K.-T.K., C.L., R.J.F.L., N.J.W., J.-H.Z.; Genebank: H.A., J.H., S.L.H., W.H.W.T.; INGI CARL: P.G., G.G., N.P.; INGI CILENTO: M.C., T.N., D.R., R.Sorice.; INGI FVG: A.P.d.A., A.Robino, S.U.; INGI Val Borbera: G.P., C.S., D.T., M.T.; KORA: A.D., C.G., T.I., C.Meisinger, J.S.R.; LBC: I.J.D., S.E.H., L.M.L., J.M.S.; LIFELINES: R.A.d.B., I.P.K., I.M.-L., G.N., P.v.d.H., L.J.v.P., N.V., B.H.R.W.; LOLIPOP: A.Al-Hussani, J.C.C., D.D., P.E., J.S.K., X.L., K.M., J.Scott, J.Sehmi, S.-T.T., W.Z.; LURIC: B.G., B.O.B., M.E.K., W.M., B.R.W.; MDC: A.F.D., G.E., B.H., C.E.H., O.M., S.P., J.G.S.; MICROS: M.G., A.AHicks, A.S.-P., P.P.P.; NESDA: I.M.N., B.W.P., J.H.S., H.Snieder; NFBC1966: A.-L.H., M.-R.J., P.F.O., A.Pouta, A.Ruokonen.; NTR: A.Abdellaoui, D.I.B., E.J.C.d.G., J.-J.H., M.H.d.M., G.Willemsen; OGP: F.M., D.P., L.Portas, M.P.; PREVEND: R.A.d.B., I.M.-L., G.N., P.v.d.H., W.H.v.G., D.J.v.V., N.V.; QIMR: B.Benyamin, M.A.F., N.G.M., S.E.M., G.W.M., C.S.T., P.M.V., J.B.W.; SardiNIA: F.C., E.P., S.S., M.U.; SHIP: A.G., M.Nauck, C.O.S., A.Teumer, U.V.; SMART: A.Algra, F.W.A., P.I.W.d.B., V.T.; SORBS: V.L., I.P., M.S., A.Tönjes.; TwinsUK: Y.M., S.-Y.S., N.S., T.D.S.; UKBS: J.J., W.H.O., N.S., J.Stephens; Young Finns: M.K., T.L., L.-P.L., O.R. Functional studies: Drosophila, U.E., F.S.D., A.A.Hicks, M.Novatchkova, J.M.P., U.P., C.X.W., G.Wirnsberger; expression profiling, W.O.C., L.Franke, L.L., M.F.M., A.Rendon, E.S., H.-J.W.; FAIRE, C.A.A., P.D., W.H.O., D.S.P., A.Rendon, N.S. Data analysis and bioinformatics: A.Al-Hussani, S.B., J.C.C., M.D., L.Ferrucci, P.v.d.H., S.K., X.L., I.M.-L., K.M., S.M., A.Radhakrishnan, A.Rendon, R.R.-S., H.Schepers, J.Sehmi, N.S., H.H.W.S., S.T., T.T., N.V., K.V., P.V., J.Y., W.Z.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
This file contains Supplementary Notes, Supplementary Tables 1-3 and 6-26 (see separate files for Supplementary Tables 4 and 5), Supplementary References and Supplementary Figures 1-8 – see contents list for details. (PDF 9711 kb)
Supplementary Tables
This file contains Supplementary Table 4 (see Supplementary Information file for legend). (XLS 1764 kb)
Supplementary Tables
This file contains Supplementary Table 5 (see Supplementary Information file for legend). (XLSX 9488 kb)
Rights and permissions
About this article
Cite this article
van der Harst, P., Zhang, W., Mateo Leach, I. et al. Seventy-five genetic loci influencing the human red blood cell. Nature 492, 369–375 (2012). https://doi.org/10.1038/nature11677
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature11677
This article is cited by
-
Higher hemoglobin levels are an independent risk factor for gestational diabetes
Scientific Reports (2022)
-
Fount, fate, features, and function of renal erythropoietin-producing cells
Pflügers Archiv - European Journal of Physiology (2022)
-
Genome-wide meta-analysis of iron status biomarkers and the effect of iron on all-cause mortality in HUNT
Communications Biology (2022)
-
Predictive SNPs for β0-thalassemia/HbE disease severity
Scientific Reports (2021)
-
Higher hemoglobin levels are an independent risk factor for adverse metabolism and higher mortality in a 20-year follow-up
Scientific Reports (2021)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.