Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Seventy-five genetic loci influencing the human red blood cell

This article has been updated

Abstract

Anaemia is a chief determinant of global ill health, contributing to cognitive impairment, growth retardation and impaired physical capacity. To understand further the genetic factors influencing red blood cells, we carried out a genome-wide association study of haemoglobin concentration and related parameters in up to 135,367 individuals. Here we identify 75 independent genetic loci associated with one or more red blood cell phenotypes at P < 10−8, which together explain 4–9% of the phenotypic variance per trait. Using expression quantitative trait loci and bioinformatic strategies, we identify 121 candidate genes enriched in functions relevant to red blood cell biology. The candidate genes are expressed preferentially in red blood cell precursors, and 43 have haematopoietic phenotypes in Mus musculus or Drosophila melanogaster. Through open-chromatin and coding-variant analyses we identify potential causal genetic variants at 41 loci. Our findings provide extensive new insights into genetic mechanisms and biological pathways controlling red blood cell formation and function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gene-expression patterns for 121 putative candidate genes, and tissue distribution of NDRs.
Figure 2: RNAi silencing in D. melanogaster.
Figure 3: Association of SNP score with red blood cell phenotypes.

Similar content being viewed by others

Accession codes

Data deposits

Summary statistics from the genome-wide association study are available from the European Genome‐Phenome Archive (EGA, http://www.ebi.ac.uk/ ega) under accession number EGAS00000000132.

Change history

  • 19 December 2012

    Footnote symbols in the Table 1 legend were corrected.

References

  1. Chambers, J. C. et al. Genome-wide association study identifies variants in TMPRSS6 associated with hemoglobin levels. Nature Genet. 41, 1170–1172 (2009)

    Article  CAS  Google Scholar 

  2. Ganesh, S. K. et al. Multiple loci influence erythrocyte phenotypes in the CHARGE Consortium. Nature Genet. 41, 1191–1198 (2009)

    Article  CAS  Google Scholar 

  3. Soranzo, N. et al. A genome-wide meta-analysis identifies 22 loci associated with eight hematological parameters in the HaemGen consortium. Nature Genet. 41, 1182–1190 (2009)

    Article  CAS  Google Scholar 

  4. Kamatani, Y. et al. Genome-wide association study of hematological and biochemical traits in a Japanese population. Nature Genet. 42, 210–215 (2010)

    Article  CAS  Google Scholar 

  5. Ding, K. et al. Genetic loci implicated in erythroid differentiation and cell cycle regulation are associated with red blood cell traits. Mayo Clin. Proc. 87, 461–474 (2012)

    Article  CAS  Google Scholar 

  6. Pe’er, I., Yelensky, R., Altshuler, D. & Daly, M. J. Estimation of the multiple testing burden for genomewide association studies of nearly all common variants. Genet. Epidemiol. 32, 381–385 (2008)

    Article  Google Scholar 

  7. Nyholt, D. R. A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other. Am. J. Hum. Genet. 74, 765–769 (2004)

    Article  CAS  Google Scholar 

  8. Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nature Genet. 44, 369–375 (2012)

    Article  CAS  Google Scholar 

  9. Raychaudhuri, S. et al. Identifying relationships among genomic disease regions: predicting genes at pathogenic SNP associations and rare deletions. PLoS Genet. 5, e1000534 (2009)

    Article  Google Scholar 

  10. An, X. & Mohandas, N. Disorders of red cell membrane. Br. J. Haematol. 141, 367–375 (2008)

    CAS  PubMed  Google Scholar 

  11. van Wijk, R., Rijksen, G., Huizinga, E. G., Nieuwenhuis, H. K. & van Solinge, W. W. HK Utrecht: missense mutation in the active site of human hexokinase associated with hexokinase deficiency and severe nonspherocytic hemolytic anemia. Blood 101, 345–347 (2003)

    Article  CAS  Google Scholar 

  12. Camaschella, C. & Poggiali, E. Inherited disorders of iron metabolism. Curr. Opin. Pediatr. 23, 14–20 (2011)

    Article  CAS  Google Scholar 

  13. Novershtern, N. et al. Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell 144, 296–309 (2011)

    Article  CAS  Google Scholar 

  14. Gieger, C. et al. New gene functions in megakaryopoiesis and platelet formation. Nature 480, 201–208 (2011)

    Article  ADS  CAS  Google Scholar 

  15. Paul, D. S. et al. Maps of open chromatin guide the functional follow-up of genome-wide association signals: application to hematological traits. PLoS Genet. 7, e1002139 (2011)

    Article  CAS  Google Scholar 

  16. Forrester, W. C., Thompson, C., Elder, J. T. & Groudine, M. A developmentally stable chromatin structure in the human beta-globin gene cluster. Proc. Natl Acad. Sci. USA 83, 1359–1363 (1986)

    Article  ADS  CAS  Google Scholar 

  17. Tuan, D., Solomon, W., Li, Q. & London, I. M. The “beta-like-globin” gene domain in human erythroid cells. Proc. Natl Acad. Sci. USA 82, 6384–6388 (1985)

    Article  ADS  CAS  Google Scholar 

  18. Kowalczyk, M. S. et al. Intragenic enhancers act as alternative promoters. Mol. Cell 45, 447–458 (2012)

    Article  CAS  Google Scholar 

  19. Baù, D. et al. The three-dimensional folding of the α-globin gene domain reveals formation of chromatin globules. Nature Struct. Mol. Biol. 18, 107–114 (2011)

    Article  Google Scholar 

  20. Zsebo, K. M. et al. Stem cell factor is encoded at the Sl locus of the mouse and is the ligand for the c-kit tyrosine kinase receptor. Cell 63, 213–224 (1990)

    Article  CAS  Google Scholar 

  21. Heissig, B. et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109, 625–637 (2002)

    Article  CAS  Google Scholar 

  22. Kozar, K. et al. Mouse development and cell proliferation in the absence of D-cyclins. Cell 118, 477–491 (2004)

    Article  CAS  Google Scholar 

  23. Dietzl, G. et al. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila . Nature 448, 151–156 (2007)

    Article  ADS  CAS  Google Scholar 

  24. Clark, R. H. et al. Adaptor protein 3-dependent microtubule-mediated movement of lytic granules to the immunological synapse. Nature Immunol. 4, 1111–1120 (2003)

    Article  CAS  Google Scholar 

  25. Berhane, S. et al. Adenovirus E1A interacts directly with, and regulates the level of expression of, the immunoproteasome component MECL1. Virology 421, 149–158 (2011)

    Article  MathSciNet  CAS  Google Scholar 

  26. Tiwari, S. & Weissman, A. M. Endoplasmic reticulum (ER)-associated degradation of T cell receptor subunits. Involvement of ER-associated ubiquitin-conjugating enzymes (E2s). J. Biol. Chem. 276, 16193–16200 (2001)

    Article  CAS  Google Scholar 

  27. Fransen, K. et al. Analysis of SNPs with an effect on gene expression identifies UBE2L3 and BCL3 as potential new risk genes for Crohn’s disease. Hum. Mol. Genet. 19, 3482–3488 (2010)

    Article  CAS  Google Scholar 

  28. Zhernakova, A. et al. Meta-analysis of genome-wide association studies in celiac disease and rheumatoid arthritis identifies fourteen non-HLA shared loci. PLoS Genet. 7, e1002004 (2011)

    Article  CAS  Google Scholar 

  29. Das, S., Ghosh, R. & Maitra, U. Eukaryotic translation initiation factor 5 functions as a GTPase-activating protein. J. Biol. Chem. 276, 6720–6726 (2001)

    Article  CAS  Google Scholar 

  30. Fenton, T. R. & Gout, I. T. Functions and regulation of the 70 kDa ribosomal S6 kinases. Int. J. Biochem. Cell Biol. 43, 47–59 (2011)

    Article  CAS  Google Scholar 

  31. Scanlon, K. S., Yip, R., Schieve, L. A. & Cogswell, M. E. High and low hemoglobin levels during pregnancy: differential risks for preterm birth and small for gestational age. Obstet. Gynecol. 96, 741–748 (2000)

    CAS  PubMed  Google Scholar 

  32. Shah, R. C., Buchman, A. S., Wilson, R. S., Leurgans, S. E. & Bennett, D. A. Hemoglobin level in older persons and incident Alzheimer disease: prospective cohort analysis. Neurology 77, 219–226 (2011)

    Article  CAS  Google Scholar 

  33. Sabatine, M. S. et al. Association of hemoglobin levels with clinical outcomes in acute coronary syndromes. Circulation 111, 2042–2049 (2005)

    Article  CAS  Google Scholar 

  34. Zakai, N. A. et al. A prospective study of anemia status, hemoglobin concentration, and mortality in an elderly cohort: the Cardiovascular Health Study. Arch. Intern. Med. 165, 2214–2220 (2005)

    Article  Google Scholar 

  35. Galanello, R. et al. Amelioration of Sardinian β0 thalassemia by genetic modifiers. Blood 114, 3935–3937 (2009)

    Article  CAS  Google Scholar 

  36. Boyle, A. P., Guinney, J., Crawford, G. E. & Furey, T. S. F-Seq: a feature density estimator for high-throughput sequence tags. Bioinformatics 24, 2537–2538 (2008)

    Article  CAS  Google Scholar 

  37. Holm, H. et al. A rare variant in MYH6 is associated with high risk of sick sinus syndrome. Nature Genet. 43, 316–320 (2011)

    Article  CAS  Google Scholar 

  38. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011)

    Article  CAS  Google Scholar 

  39. Dixon, A. L. et al. A genome-wide association study of global gene expression. Nature Genet. 39, 1202–1207 (2007)

    Article  CAS  Google Scholar 

  40. Dubois, P. C. et al. Multiple common variants for celiac disease influencing immune gene expression. Nature Genet. 42, 295–302 (2010)

    Article  CAS  Google Scholar 

  41. Anderson, R. J. et al. Reduced dependency on arteriography for penetrating extremity trauma: influence of wound location and noninvasive vascular studies. J. Trauma 30, 1059–1063 (1990)

    Article  CAS  Google Scholar 

  42. Giresi, P. G. & Lieb, J. D. Isolation of active regulatory elements from eukaryotic chromatin using FAIRE (Formaldehyde Assisted Isolation of Regulatory Elements). Methods 48, 233–239 (2009)

    Article  CAS  Google Scholar 

  43. Lunter, G. & Goodson, M. Stampy: a statistical algorithm for sensitive and fast mapping of Illumina sequence reads. Genome Res. 21, 936–939 (2011)

    Article  CAS  Google Scholar 

  44. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010)

    Article  CAS  Google Scholar 

  45. Pickrell, J. K., Gaffney, D. J., Gilad, Y. & Pritchard, J. K. False positive peaks in ChIP-seq and other sequencing-based functional assays caused by unannotated high copy number regions. Bioinformatics 27, 2144–2146 (2011)

    Article  CAS  Google Scholar 

  46. Vilella, A. J. et al. EnsemblCompara GeneTrees: complete, duplication-aware phylogenetic trees in vertebrates. Genome Res. 19, 327–335 (2009)

    Article  CAS  Google Scholar 

  47. Goto, A. et al. A Drosophila haemocyte-specific protein, hemolectin, similar to human von Willebrand factor. Biochem. J. 359, 99–108 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A detailed list of acknowledgements is provided in the Supplementary Material.

Author information

Authors and Affiliations

Authors

Contributions

Study organisation: J.C.C., C.G., P.v.d.H., J.S.K., W.H.O. and N.S. Manuscript preparation: H.A., J.S.B., J.C.C., G.V.D., P.D., C.G., P.v.d.H., A.A.Hicks, J.S.K., I.M.-L., W.H.O., A.Radhakrishnan, A.Rendon, S.S., J.Sehmi, N.S., D.S.P., M.U., N.V. and W.Z. All authors reviewed and had the opportunity to comment on the manuscript. Data collection and analysis in the participating genome-wide association, replication and phenotype cohorts: ALSPAC: D.M.E., J.P.K., S.M.R., G.D.S; AMISH: Q.D.G., B.D.M., A.Parsa, A.R.S.; Beta-thalassaemia: F.A., F.D., P.Fortina, R.G, L.Perseu, A.Piga, S.S., M.U.; CBR: A.Attwood, J.D., S.F.G., H.L.-J., C.Moore, W.H.O., J.Sambrook; CoLAUS: F.B., J.S.B., M.H., P.V.; DeCODE: G.I.E., D.F.G., H.H., I.O., P.T.O., K.S., P.S., U.T.; DESIR: B.Balkau, C.D., P.Froguel, R.Sladek; EGCUT: T.E., K.F., A.M., E.M., A.S.; EPIC: K.-T.K., C.L., R.J.F.L., N.J.W., J.-H.Z.; Genebank: H.A., J.H., S.L.H., W.H.W.T.; INGI CARL: P.G., G.G., N.P.; INGI CILENTO: M.C., T.N., D.R., R.Sorice.; INGI FVG: A.P.d.A., A.Robino, S.U.; INGI Val Borbera: G.P., C.S., D.T., M.T.; KORA: A.D., C.G., T.I., C.Meisinger, J.S.R.; LBC: I.J.D., S.E.H., L.M.L., J.M.S.; LIFELINES: R.A.d.B., I.P.K., I.M.-L., G.N., P.v.d.H., L.J.v.P., N.V., B.H.R.W.; LOLIPOP: A.Al-Hussani, J.C.C., D.D., P.E., J.S.K., X.L., K.M., J.Scott, J.Sehmi, S.-T.T., W.Z.; LURIC: B.G., B.O.B., M.E.K., W.M., B.R.W.; MDC: A.F.D., G.E., B.H., C.E.H., O.M., S.P., J.G.S.; MICROS: M.G., A.AHicks, A.S.-P., P.P.P.; NESDA: I.M.N., B.W.P., J.H.S., H.Snieder; NFBC1966: A.-L.H., M.-R.J., P.F.O., A.Pouta, A.Ruokonen.; NTR: A.Abdellaoui, D.I.B., E.J.C.d.G., J.-J.H., M.H.d.M., G.Willemsen; OGP: F.M., D.P., L.Portas, M.P.; PREVEND: R.A.d.B., I.M.-L., G.N., P.v.d.H., W.H.v.G., D.J.v.V., N.V.; QIMR: B.Benyamin, M.A.F., N.G.M., S.E.M., G.W.M., C.S.T., P.M.V., J.B.W.; SardiNIA: F.C., E.P., S.S., M.U.; SHIP: A.G., M.Nauck, C.O.S., A.Teumer, U.V.; SMART: A.Algra, F.W.A., P.I.W.d.B., V.T.; SORBS: V.L., I.P., M.S., A.Tönjes.; TwinsUK: Y.M., S.-Y.S., N.S., T.D.S.; UKBS: J.J., W.H.O., N.S., J.Stephens; Young Finns: M.K., T.L., L.-P.L., O.R. Functional studies: Drosophila, U.E., F.S.D., A.A.Hicks, M.Novatchkova, J.M.P., U.P., C.X.W., G.Wirnsberger; expression profiling, W.O.C., L.Franke, L.L., M.F.M., A.Rendon, E.S., H.-J.W.; FAIRE, C.A.A., P.D., W.H.O., D.S.P., A.Rendon, N.S. Data analysis and bioinformatics: A.Al-Hussani, S.B., J.C.C., M.D., L.Ferrucci, P.v.d.H., S.K., X.L., I.M.-L., K.M., S.M., A.Radhakrishnan, A.Rendon, R.R.-S., H.Schepers, J.Sehmi, N.S., H.H.W.S., S.T., T.T., N.V., K.V., P.V., J.Y., W.Z.

Corresponding authors

Correspondence to Pim van der Harst, Christian Gieger, Jaspal S. Kooner, Willem H. Ouwehand, Nicole Soranzo or John C. Chambers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Notes, Supplementary Tables 1-3 and 6-26 (see separate files for Supplementary Tables 4 and 5), Supplementary References and Supplementary Figures 1-8 – see contents list for details. (PDF 9711 kb)

Supplementary Tables

This file contains Supplementary Table 4 (see Supplementary Information file for legend). (XLS 1764 kb)

Supplementary Tables

This file contains Supplementary Table 5 (see Supplementary Information file for legend). (XLSX 9488 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Harst, P., Zhang, W., Mateo Leach, I. et al. Seventy-five genetic loci influencing the human red blood cell. Nature 492, 369–375 (2012). https://doi.org/10.1038/nature11677

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11677

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing