Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission

Abstract

A metal film perforated by a regular array of subwavelength holes shows unexpectedly large transmission at particular wavelengths, a phenomenon known as the extraordinary optical transmission (EOT) of metal hole arrays1. EOT was first attributed to surface plasmon polaritons, stimulating a renewed interest in plasmonics2,3,4 and metallic surfaces with subwavelength features5,6,7. Experiments soon revealed that the field diffracted at a hole or slit is not a surface plasmon polariton mode alone8. Further theoretical analysis9 predicted that the extra contribution, from quasi-cylindrical waves10,11,12,13, also affects EOT. Here we report the experimental demonstration of the relative importance of surface plasmon polaritons and quasi-cylindrical waves in EOT by considering hole arrays of different hole densities. From the measured transmission spectra, we determine microscopic scattering parameters which allow us to show that quasi-cylindrical waves affect EOT only for high densities, when the hole spacing is roughly one wavelength. Apart from providing a deeper understanding of EOT, the determination of microscopic scattering parameters from the measurement of macroscopic optical properties paves the way to novel design strategies.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Sample design.
Figure 2: Measured transmission spectra (solid curves) and the fitted SPP model (red dashed curves).

References

  1. Ebbesen, T. W., Lezec, H. J., Ghaemi, H. F., Thio, T. & Wolff, P. A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998)

    ADS  CAS  Article  Google Scholar 

  2. Yanik, A. A. et al. An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media. Nano Lett. 10, 4962–4969 (2010)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  3. Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009)

    ADS  CAS  Article  Google Scholar 

  4. Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nature Mater. 9, 205–213 (2010)

    ADS  CAS  Article  Google Scholar 

  5. Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)

    ADS  CAS  Article  Google Scholar 

  6. García de Abajo, F. J. Light scattering by particle and hole arrays. Rev. Mod. Phys. 79, 1267–1290 (2007)

    ADS  Article  Google Scholar 

  7. García-Vidal, F. J., Martín-Moreno, L., Ebbesen, T. W. & Kuipers, L. Light passing through subwavelength apertures. Rev. Mod. Phys. 82, 729–787 (2010)

    ADS  Article  Google Scholar 

  8. Gay, G. et al. The optical response of nanostructured surfaces and the composite diffracted evanescent wave model. Nature Phys. 2, 262–267 (2006)

    ADS  CAS  Article  Google Scholar 

  9. Liu, H. T. & Lalanne, P. Microscopic theory of the extraordinary optical transmission. Nature 452, 728–731 (2008)

    ADS  CAS  Article  Google Scholar 

  10. Lalanne, P. & Hugonin, J. P. Interaction between optical nano-objects at metallo-dielectric interfaces. Nature Phys. 2, 551–556 (2006)

    ADS  CAS  Article  Google Scholar 

  11. Dai, W. & Soukoulis, C. M. Theoretical analysis of the surface wave along a metal-dielectric interface. Phys. Rev. B 80, 155407 (2009)

    ADS  Article  Google Scholar 

  12. Lalanne, P., Hugonin, J. P., Liu, H. T. & Wang, B. A microscopic view of the electromagnetic properties of sub-λ metallic surfaces. Surf. Sci. Rep. 64, 453–469 (2009)

    ADS  CAS  Article  Google Scholar 

  13. Nikitin, A. Y., García-Vidal, F. J. & Martín-Moreno, L. Surface electromagnetic field radiated by a subwavelength hole in a metal film. Phys. Rev. Lett. 105, 073902 (2010)

    ADS  Article  Google Scholar 

  14. Nikitin, A., Yu, Rodrigo, S. G., García-Vidal, F. J. & Martín-Moreno, L. In the diffraction shadow: Norton waves versus surface plasmon polaritons in the optical region. N. J. Phys. 11, 123020 (2009)

    Article  Google Scholar 

  15. Gan, C. H., Lalouat, L., Lalanne, P. & Aigouy, L. Optical quasicylindrical waves at dielectric interfaces. Phys. Rev. B 83, 085422 (2011)

    ADS  Article  Google Scholar 

  16. Barnes, W. L., Murray, W. A., Dintinger, J., Devaux, E. & Ebbesen, T. W. Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film. Phys. Rev. Lett. 92, 107401 (2004)

    ADS  CAS  Article  Google Scholar 

  17. Stolwijk, D. et al. Enhanced coupling of plasmons in hole arrays with periodic dielectric antennas. Opt. Lett. 33, 363–365 (2008)

    ADS  CAS  Article  Google Scholar 

  18. Yin, L. et al. Subwavelength focusing and guiding of surface plasmons. Nano Lett. 5, 1399–1402 (2005)

    ADS  CAS  Article  Google Scholar 

  19. Lalanne, P., Sauvan, C., Hugonin, J. P., Rodier, J. C. & Chavel, P. Perturbative approach for surface plasmon effects on flat interfaces periodically corrugated by subwavelength apertures. Phys. Rev. B 68, 125404 (2003)

    ADS  Article  Google Scholar 

  20. Maystre, D., Fehrembach, A.-L. & Popov, E. Plasmonic antiresonance through subwavelength hole arrays. J. Opt. Soc. Am. A 28, 342–355 (2011)

    ADS  Article  Google Scholar 

  21. Born, M. & Wolf, E. Principles of Optics (Pergamon, 1986)

    Google Scholar 

  22. Palik, E. D. Handbook of Optical Constants of Solids 286–295 (Academic, 1985)

    Google Scholar 

  23. Bethe, H. A. Theory of diffraction by small holes. Phys. Rev. 66, 163–182 (1944)

    ADS  MathSciNet  Article  Google Scholar 

  24. van der Molen, K. L. et al. Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: experiment and theory. Phys. Rev. B 72, 045421 (2005)

    ADS  Article  Google Scholar 

  25. van Beijnum, F., Rétif, C., Smiet, C. B. & van Exter, M. P. Transmission processes in random patterns of subwavelength holes. Opt. Lett. 36, 3666–3668 (2011)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge E. R. Eliel for discussions. H.L. acknowledges a Poste Rouge fellowship from CNRS and the 973 Program (2013CB328701). This work is part of the research program of the Foundation for Fundamental Research on Matter (FOM), which is part of the Netherlands Organisation for Scientific Research (NWO).

Author information

Authors and Affiliations

Authors

Contributions

F.v.B. was the primary researcher on the project; he designed the experiment and wrote the paper. With C.B.S., F.v.B. conducted the experiments and analysed the data. C.R. made the samples. H.L., P.L. and M.P.v.E. made essential contributions to interpreting the results and writing the manuscript.

Corresponding author

Correspondence to Frerik van Beijnum.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains a more elaborate discussion of the theoretical framework used in the main article. It contains the extension of the SPP model, which includes the quasi-cylindrical wave, and explains the discrepancy found between the SPP model and the experimental data for the q=1 sample. (PDF 258 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

van Beijnum, F., Rétif, C., Smiet, C. et al. Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission. Nature 492, 411–414 (2012). https://doi.org/10.1038/nature11669

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11669

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing