Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Continuous gas-phase synthesis of nanowires with tunable properties

Abstract

Semiconductor nanowires are key building blocks for the next generation of light-emitting diodes1, solar cells2 and batteries3. To fabricate functional nanowire-based devices on an industrial scale requires an efficient methodology that enables the mass production of nanowires with perfect crystallinity, reproducible and controlled dimensions and material composition, and low cost. So far there have been no reports of reliable methods that can satisfy all of these requirements. Here we show how aerotaxy, an aerosol-based growth method4, can be used to grow nanowires continuously with controlled nanoscale dimensions, a high degree of crystallinity and at a remarkable growth rate. In our aerotaxy approach, catalytic size-selected Au aerosol particles induce nucleation and growth of GaAs nanowires with a growth rate of about 1 micrometre per second, which is 20 to 1,000 times higher than previously reported for traditional, substrate-based growth of nanowires made of group III–V materials5,6,7. We demonstrate that the method allows sensitive and reproducible control of the nanowire dimensions and shape—and, thus, controlled optical and electronic properties—through the variation of growth temperature, time and Au particle size. Photoluminescence measurements reveal that even as-grown nanowires have good optical properties and excellent spectral uniformity. Detailed transmission electron microscopy investigations show that our aerotaxy-grown nanowires form along one of the four equivalent 〈111〉B crystallographic directions in the zincblende unit cell, which is also the preferred growth direction for III–V nanowires seeded by Au particles on a single-crystal substrate. The reported continuous and potentially high-throughput method can be expected substantially to reduce the cost of producing high-quality nanowires and may enable the low-cost fabrication of nanowire-based devices on an industrial scale.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Aerotaxy growth of nanowires.
Figure 2: Scanning electron microscope images of GaAs nanowires grown by aerotaxy under different growth conditions.
Figure 3: Temperature dependence of the nanowire crystal structure.
Figure 4: Photoluminescence spectra.

References

  1. 1

    Qian, F., Gradečak, S., Li, Y., Wen, C.-Y. & Lieber, C. M. Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett. 5, 2287–2291 (2005)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Borgström, M. T. et al. Nanowires with promise for photovoltaics. IEEE J. Sel. Top. Quantum Electron. 17, 1050–1061 (2011)

    ADS  Article  Google Scholar 

  3. 3

    Chan, C. K. et al. High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnol 3, 31–35 (2008)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Deppert, K. & Samuelson, L. Self-limiting transformation of monodisperse Ga droplets into GaAs nanocrystals. Appl. Phys. Lett. 68, 1409–1411 (1996)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Joyce, H. J. et al. Unexpected benefits of rapid growth rate for III−V nanowires. Nano Lett. 9, 695–701 (2009)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Borgström, M. T., Immink, G., Ketelaars, B., Algra, R. & Bakkers, E. P. A. M. Synergetic nanowire growth. Nature Nanotechnol. 2, 541–544 (2007)

    ADS  Article  Google Scholar 

  7. 7

    Ramdani, M. R. et al. Fast growth synthesis of GaAs nanowires with exceptional length. Nano Lett. 10, 1836–1841 (2010)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Yazawa, M., Koguchi, M., Muto, A., Ozawa, M. & Hiruma, K. Effect of one monolayer of surface gold atoms on the epitaxial growth of InAs nanowhiskers. Appl. Phys. Lett. 61, 2051–2053 (1992)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Haraguchi, K., Katsuyama, T. & Hiruma, K. Polarization dependence of light emitted from GaAs p-n junctions in quantum wire crystals. J. Appl. Phys. 75, 4220–4225 (1994)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Björk, M. T. et al. One-dimensional steeplechase for electrons realized. Nano Lett. 2, 87–89 (2002)

    ADS  Article  Google Scholar 

  11. 11

    Holmes, J. D., Johnston, K. P., Doty, R. C. & Korgel, B. A. Control of thickness and orientation of solution-grown silicon nanowires. Science 287, 1471–1473 (2000)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Wang, F. et al. Solution−liquid−solid growth of semiconductor nanowires. Inorg. Chem. 45, 7511–7521 (2006)

    CAS  Article  Google Scholar 

  13. 13

    Duan, X. & Lieber, C. M. General synthesis of compound semiconductor nanowires. Adv. Mater. 12, 298–302 (2000)

    CAS  Article  Google Scholar 

  14. 14

    Karlsson, L., Deppert, K. & Malm, J.-O. Size determination of Au aerosol nanoparticles by off-line TEM/STEM observations. J. Nanopart. Res. 8, 971–980 (2006)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Gudiksen, M. S., Wang, J. & Lieber, C. M. Size-dependent photoluminescence from single indium phosphide nanowires. J. Phys. Chem. B 106, 4036–4039 (2002)

    CAS  Article  Google Scholar 

  16. 16

    Ford, A. C. et al. Diameter-dependent electron mobility of InAs nanowires. Nano Lett. 9, 360–365 (2009)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Magnusson, M. H., Deppert, K., Malm, J.-O., Bovin, J.-O. & Samuelson, L. Size-selected gold nanoparticles by aerosol technology. Nanostruct. Mater. 12, 45–48 (1999)

    Article  Google Scholar 

  18. 18

    Kim, S. H. & Zachariah, M. R. Gas-phase growth of diameter-controlled carbon nanotubes. Mater. Lett. 61, 2079–2083 (2007)

    CAS  Article  Google Scholar 

  19. 19

    Wacaser, B. A. et al. Preferential interface nucleation: an expansion of the VLS growth mechanism for nanowires. Adv. Mater. 21, 153–165 (2009)

    CAS  Article  Google Scholar 

  20. 20

    Soci, C., Bao, X.-Y., Aplin, D. P. R. & Wang, D. A systematic study on the growth of GaAs nanowires by metal−organic chemical vapor deposition. Nano Lett. 8, 4275–4282 (2008)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Borgström, M., Deppert, K., Samuelson, L. & Seifert, W. Size- and shape-controlled GaAs nano-whiskers grown by MOVPE: a growth study. J. Cryst. Growth 260, 18–22 (2004)

    ADS  Article  Google Scholar 

  22. 22

    Caroff, P., Bolinsson, J. & Johansson, J. Crystal phases in III–V nanowires: from random toward engineered polytypism. IEEE J. Sel. Top. Quantum Electron. 17, 829–846 (2011)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Bogardus, E. H. & Bebb, H. B. Bound-exciton, free-exciton, band-acceptor, donor-acceptor, and auger recombination in GaAs. Phys. Rev. 176, 993–1002 (1968)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Morral, A. F. Gold-free GaAs nanowire synthesis and optical properties. IEEE J. Sel. Top. Quantum Electron. 17, 819–828 (2011)

    ADS  Article  Google Scholar 

  25. 25

    Heiss, M. et al. Direct correlation of crystal structure and optical properties in wurtzite/zinc-blende GaAs nanowire heterostructures. Phys. Rev. B 83, 045303 (2011)

    ADS  Article  Google Scholar 

  26. 26

    Dong, A., Yu, H., Wang, F. & Buhro, W. E. Colloidal GaAs quantum wires: solution−liquid−solid synthesis and quantum-confinement studies. J. Am. Chem. Soc. 130, 5954–5961 (2008)

    CAS  Article  Google Scholar 

  27. 27

    Duan, X., Wang, J. & Lieber, C. M. Synthesis and optical properties of gallium arsenide nanowires. Appl. Phys. Lett. 76, 1116–1118 (2000)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Moewe, M., Chuang, L. C., Crankshaw, S., Chase, C. & Chang-Hasnain, C. Atomically sharp catalyst-free wurtzite GaAs/AlGaAs nanoneedles grown on silicon. Appl. Phys. Lett. 93, 023116 (2008)

    ADS  Article  Google Scholar 

  29. 29

    Freer, E. M., Grachev, O., Duan, X., Martin, S. & Stumbo, D. P. High-yield self-limiting single-nanowire assembly with dielectrophoresis. Nature Nanotechnol. 5, 525–530 (2010)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Huang, Y., Duan, X., Wei, Q. & Lieber, C. M. Directed assembly of one-dimensional nanostructures into functional networks. Science 291, 630–633 (2001)

    ADS  CAS  Article  Google Scholar 

  31. 31

    Dresselhaus, M. S. et al. New directions for low-dimensional thermoelectric materials. Adv. Mater. 19, 1043–1053 (2007)

    CAS  Article  Google Scholar 

  32. 32

    Boukai, A. I. et al. Silicon nanowires as efficient thermoelectric materials. Nature 451, 168–171 (2008)

    ADS  CAS  Article  Google Scholar 

  33. 33

    Taftø, J. & Spence, J. C. H. A simple method for the determination of structure-factor phase relationships and crystal polarity using electron diffraction. J. Appl. Crystallogr. 15, 60–64 (1982)

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Borgström for discussions on the nanowire growth, B. Meuller for technical assistance with the growth setup, D. Csontos for reviewing our manuscript before submission and B. Pedersen for supporting this project by making the infrastructure of Sol Voltaics AB available. We acknowledge G. Alcott and E. Nilsson for sharing their preliminary results on doping. This project is performed within the Nanometer Structure Consortium at Lund University (nmC@LU) and with financial support from the Swedish Research Council, the Swedish Foundation for Strategic Research, the Knut and Alice Wallenberg Foundation and VINNOVA.

Author information

Affiliations

Authors

Contributions

M.H., M.H.M., K.D. and L.S. designed the growth experiments. M.H. and M.H.M. performed the growth experiments. M.H., M.H.M., D.L. and M.E. performed the characterization and data analysis. K.D., L.R.W. and L.S. supervised the project. M.H. and L.S. wrote the main part of the paper. All authors reviewed and commented on the manuscript.

Corresponding author

Correspondence to Lars Samuelson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, Supplementary Table 1 and Supplementary Figures 1-7. (PDF 1426 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Heurlin, M., Magnusson, M., Lindgren, D. et al. Continuous gas-phase synthesis of nanowires with tunable properties. Nature 492, 90–94 (2012). https://doi.org/10.1038/nature11652

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing