Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A map of visual space in the primate entorhinal cortex

This article has been updated

Abstract

Place-modulated activity among neurons in the hippocampal formation presents a means to organize contextual information in the service of memory formation and recall1,2. One particular spatial representation, that of grid cells, has been observed in the entorhinal cortex (EC) of rats and bats3,4,5, but has yet to be described in single units in primates. Here we examined spatial representations in the EC of head-fixed monkeys performing a free-viewing visual memory task6,7. Individual neurons were identified in the primate EC that emitted action potentials when the monkey fixated multiple discrete locations in the visual field in each of many sequentially presented complex images. These firing fields possessed spatial periodicity similar to a triangular tiling with a corresponding well-defined hexagonal structure in the spatial autocorrelation. Further, these neurons showed theta-band oscillatory activity and changing spatial scale as a function of distance from the rhinal sulcus, which is consistent with previous findings in rodents4,8,9,10. These spatial representations may provide a framework to anchor the encoding of stimulus content in a complex visual scene. Together, our results provide a direct demonstration of grid cells in the primate and suggest that EC neurons encode space during visual exploration, even without locomotion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spatial representation in the primate entorhinal cortex.
Figure 2: Recognition memory and conjunctive grid-memory cells.
Figure 3: Theta bouts and theta modulation of grid cells.

Similar content being viewed by others

Change history

  • 28 November 2012

    Figs 1–3 were replaced with higher resolution versions.

References

  1. Ekstrom, A. D. et al. Cellular networks underlying human spatial navigation. Nature 425, 184–188 (2003)

    Article  ADS  CAS  Google Scholar 

  2. Moser, E. I., Kropff, E. & Moser, M.-B. Place cells, grid cells, and the brain’s spatial representation system. Annu. Rev. Neurosci. 31, 69–89 (2008)

    Article  CAS  Google Scholar 

  3. Yartsev, M. M., Witter, M. P. & Ulanovsky, N. Grid cells without theta oscillations in the entorhinal cortex of bats. Nature 479, 103–107 (2011)

    Article  ADS  CAS  Google Scholar 

  4. Hafting, T., Fyhn, M., Molden, S., Moser, M.-B. & Moser, E. I. Microstructure of a spatial map in the entorhinal cortex. Nature 436, 801–806 (2005)

    Article  ADS  CAS  Google Scholar 

  5. Solstad, T., Boccara, C. N., Kropff, E., Moser, M.-B. & Moser, E. I. Representation of geometric borders in the entorhinal cortex. Science 322, 1865–1868 (2008)

    Article  ADS  CAS  Google Scholar 

  6. Jutras, M. J. & Buffalo, E. A. Recognition memory signals in the macaque hippocampus. Proc. Natl Acad. Sci. USA 107, 401–406 (2010)

    Article  ADS  CAS  Google Scholar 

  7. Jutras, M. J., Fries, P. & Buffalo, E. A. Gamma-band synchronization in the macaque hippocampus and memory formation. J. Neurosci. 29, 12521–12531 (2009)

    Article  CAS  Google Scholar 

  8. Hafting, T., Fyhn, M., Bonnevie, T., Moser, M.-B. & Moser, E. I. Hippocampus-independent phase precession in entorhinal grid cells. Nature 453, 1248–1252 (2008)

    Article  ADS  CAS  Google Scholar 

  9. Koenig, J., Linder, A. N., Leutgeb, J. K. & Leutgeb, S. The spatial periodicity of grid cells is not sustained during reduced theta oscillations. Science 332, 592–595 (2011)

    Article  ADS  CAS  Google Scholar 

  10. Brandon, M. P. et al. Reduction of theta rhythm dissociates grid cell spatial periodicity from directional tuning. Science 332, 595–599 (2011)

    Article  ADS  CAS  Google Scholar 

  11. Rolls, E. T. Spatial view cells and the representation of place in the primate hippocampus. Hippocampus 9, 467–480 (1999)

    Article  CAS  Google Scholar 

  12. Tamura, R., Ono, T., Fukuda, M. & Nakamura, K. Spatial responsiveness of monkey hippocampal neurons to various visual and auditory stimuli. Hippocampus 2, 307–322 (1992)

    Article  CAS  Google Scholar 

  13. Ono, T., Nakamura, K., Nishijo, H. & Eifuku, S. Monkey hippocampal neurons related to spatial and nonspatial functions. J. Neurophysiol. 70, 1516–1529 (1993)

    Article  CAS  Google Scholar 

  14. Robertson, R. G., Rolls, E. T., Georges-François, P. & Panzeri, S. Head direction cells in the primate pre-subiculum. Hippocampus 9, 206–219 (1999)

    Article  CAS  Google Scholar 

  15. Suzuki, W. A., Miller, E. K. & Desimone, R. Object and place memory in the macaque entorhinal cortex. J. Neurophysiol. 78, 1062–1081 (1997)

    Article  CAS  Google Scholar 

  16. Doeller, C. F., Barry, C. & Burgess, N. Evidence for grid cells in a human memory network. Nature 463, 657–661 (2010)

    Article  ADS  CAS  Google Scholar 

  17. Witter, M. P., Wouterlood, F. G., Naber, P. A. & Van Haeften, T. Anatomical organization of the parahippocampal-hippocampal network. Ann. NY Acad. Sci. 911, 1–24 (2000)

    Article  ADS  CAS  Google Scholar 

  18. Insausti, R. & Amaral, D. G. Entorhinal cortex of the monkey: IV. Topographical and laminar organization of cortical afferents. J. Comp. Neurol. 509, 608–641 (2008)

    Article  Google Scholar 

  19. Witter, M. P. & Amaral, D. G. Entorhinal cortex of the monkey: V. Projections to the dentate gyrus, hippocampus, and subicular complex. J. Comp. Neurol. 307, 437–459 (1991)

    Article  CAS  Google Scholar 

  20. Sargolini, F. et al. Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science 312, 758–762 (2006)

    Article  ADS  CAS  Google Scholar 

  21. Kjelstrup, K. B. et al. Finite scale of spatial representation in the hippocampus. Science 321, 140–143 (2008)

    Article  ADS  CAS  Google Scholar 

  22. Canto, C. B., Wouterlood, F. G. & Witter, M. P. What does the anatomical organization of the entorhinal cortex tell us? Neural Plast. 2008, 381243 (2008)

    Article  Google Scholar 

  23. Burgess, N., Barry, C. & Keefe, J. O. An oscillatory interference model of grid cell firing. Hippocampus 17, 801–812 (2007)

    Article  Google Scholar 

  24. Stewart, M. & Fox, S. E. Hippocampal theta activity in monkeys. Brain Res. 538, 59–63 (1991)

    Article  CAS  Google Scholar 

  25. Ekstrom, A. D. et al. Human hippocampal theta activity during virtual navigation. Hippocampus 15, 881–889 (2005)

    Article  Google Scholar 

  26. Mizuseki, K., Sirota, A., Pastalkova, E. & Buzsáki, G. Theta oscillations provide temporal windows for local circuit computation in the entorhinal-hippocampal loop. Neuron 64, 267–280 (2009)

    Article  CAS  Google Scholar 

  27. Langston, R. F. et al. Development of the spatial representation system in the rat. Science 328, 1576–1580 (2010)

    Article  ADS  CAS  Google Scholar 

  28. Burgess, N. & O’Keefe, J. Models of place and grid cell firing and theta rhythmicity. Curr. Opin. Neurobiol. 21, 734–744 (2011)

    Article  CAS  Google Scholar 

  29. McNaughton, B. L., Battaglia, F. P., Jensen, O., Moser, E. I. & Moser, M.-B. Path integration and the neural basis of the “cognitive map”. Nature Rev. Neurosci. 7, 663–678 (2006)

    Article  CAS  Google Scholar 

  30. Sommer, M. A. & Wurtz, R. H. A pathway in primate brain for internal monitoring of movements. Science 296, 1480–1482 (2002)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Potter, C. Erickson, J. Manns, M. Meister and K. Dunne for comments on the manuscript, and M. Tompkins and D. Solyst for assistance with experiments. This project was funded by the National Institute of Mental Health, R01MH093807 (E.A.B.), R01MH080007 (E.A.B.), MH082559 (M.J.J.), the National Center for Research Resources P51RR165, and is currently supported by the Office of Research Infrastructure Programs/OD P51OD11132. N.J.K. was supported by the NSF IGERT program (DGE-0333411).

Author information

Authors and Affiliations

Authors

Contributions

E.A.B. and N.J.K. designed the research, N.J.K. collected the data from the entorhinal cortex, M.J.J. collected data from the hippocampus, N.J.K. performed the analyses, and N.J.K. and E.A.B. wrote the paper.

Corresponding author

Correspondence to Elizabeth A. Buffalo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-9, Supplementary Methods, Supplementary Table 1 and additional references. (PDF 1200 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Killian, N., Jutras, M. & Buffalo, E. A map of visual space in the primate entorhinal cortex. Nature 491, 761–764 (2012). https://doi.org/10.1038/nature11587

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11587

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing