Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Filamentous bacteria transport electrons over centimetre distances


Oxygen consumption in marine sediments is often coupled to the oxidation of sulphide generated by degradation of organic matter in deeper, oxygen-free layers. Geochemical observations have shown that this coupling can be mediated by electric currents carried by unidentified electron transporters across centimetre-wide zones. Here we present evidence that the native conductors are long, filamentous bacteria. They abounded in sediment zones with electric currents and along their length they contained strings with distinct properties in accordance with a function as electron transporters. Living, electrical cables add a new dimension to the understanding of interactions in nature and may find use in technology development.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Filamentous Desulfobulbaceae in current-producing sediments.
Figure 2: Biogeochemical impacts of filament cutting.
Figure 3: Biogeochemical effects of filter pore size.
Figure 4: Effect of layer of glass beads intercalated in the sediment.
Figure 5: AFM, SEM, TEM and EFM micrographs of the filamentous Desulfobulbaceae.

Accession codes

Primary accessions


Data deposits

All sequences are deposited in GenBank/EMBL/DDBJ under accession numbers JX091023JX091073.


  1. Jørgensen, B. B. in Marine Geochemistry (eds Schulz, H. D. & Zabel, M. ) 173–207 (Springer, 2000)

    Book  Google Scholar 

  2. Nielsen, L. P., Risgaard-Petersen, N., Fossing, H., Christensen, P. B. & Sayama, M. Electric currents couple spatially separated biogeochemical processes in marine sediment. Nature 463, 1071–1074 (2010)

    ADS  CAS  Article  Google Scholar 

  3. Risgaard-Petersen, N., Revil, A., Meister, P. & Nielsen, L. P. Sulfur, iron-, and calcium cycling associated with natural electric currents running through marine sediment. Geochim. Cosmochim. Acta 92, 1–13 (2012)

    ADS  CAS  Article  Google Scholar 

  4. Kato, S., Hashimoto, K. & Watanabe, K. Microbial interspecies electron transfer via electric currents through conductive minerals. Proc. Natl Acad. Sci. USA 109, 10042–10046 (2012)

    ADS  CAS  Article  Google Scholar 

  5. Roden, E. E. et al. Extracellular electron transfer through microbial reduction of solid-phase humic substances. Nature Geosci. 3, 417–421 (2010)

    ADS  CAS  Article  Google Scholar 

  6. Mariscal, V., Herrero, A. & Flores, E. Continuous periplasm in a filamentous, heterocyst-forming cyanobacterium. Mol. Microbiol. 65, 1139–1145 (2007)

    CAS  Article  Google Scholar 

  7. Lu, W., Wang, D. & Chen, L. W. Near-static dielectric polarization of individual carbon nanotubes. Nano Lett. 7, 2729–2733 (2007)

    ADS  CAS  Article  Google Scholar 

  8. El-Naggar, M. Y. et al. Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proc. Natl Acad. Sci. USA 107, 18127–18131 (2010)

    ADS  CAS  Article  Google Scholar 

  9. Reguera, G. et al. Extracellular electron transfer via microbial nanowires. Nature 435, 1098–1101 (2005)

    ADS  CAS  Article  Google Scholar 

  10. Holmes, D. E., Bond, D. R. & Lovley, D. R. Electron transfer by Desulfobulbus propionicus to Fe(III) and graphite electrodes. Appl. Environ. Microbiol. 70, 1234–1237 (2004)

    CAS  Article  Google Scholar 

  11. Summers, Z. M. et al. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 330, 1413–1415 (2010)

    ADS  CAS  Article  Google Scholar 

  12. Cologgi, D. L., Lampa-Pastirk, S., Speers, A. M., Kelly, S. D. & Reguera, G. Extracellular reduction of uranium via Geobacter conductive pili as a protective cellular mechanism. Proc. Natl Acad. Sci. USA 108, 15248–15252 (2011)

    ADS  CAS  Article  Google Scholar 

  13. Canfield, D. E. Reactive iron in marine-sediments. Geochim. Cosmochim. Acta 53, 619–632 (1989)

    ADS  CAS  Article  Google Scholar 

  14. Fossing, H. et al. Concentration and transport of nitrate by the mat-forming sulphur bacterium Thioploca. Nature 374, 713–715 (1994)

    ADS  Article  Google Scholar 

  15. Preisler, A. et al. Biological and chemical sulfide oxidation in a Beggiatoa inhabited marine sediment. ISME J. 1, 341–353 (2007)

    CAS  Article  Google Scholar 

  16. Sayama, M., Risgaard-Petersen, N., Nielsen, L. P., Fossing, H. & Christensen, P. B. Impact of bacterial NO3 transport on sediment biogeochemistry. Appl. Environ. Microbiol. 71, 7575–7577 (2005)

    CAS  Article  Google Scholar 

  17. Jeroschewski, P., Steuckart, C. & Kuhl, M. An amperometric microsensor for the determination of H2S in aquatic environments. Anal. Chem. 68, 4351–4357 (1996)

    CAS  Article  Google Scholar 

  18. Revsbech, N. P. An oxygen microsensor with a guard cathode. Limnol. Oceanogr. 34, 474–478 (1989)

    ADS  CAS  Article  Google Scholar 

  19. Revsbech, N. P. & Jorgensen, B. B. Microelectrodes: their use in microbial ecology. Adv. Microb. Ecol. 9, 293–352 (1986)

    Article  Google Scholar 

  20. Cherniavskaya, O., Chen, L. W., Weng, V., Yuditsky, L. & Brus, L. E. Quantitative noncontact electrostatic force imaging of nanocrystal polarizability. J. Phys. Chem. B 107, 1525–1531 (2003)

    CAS  Article  Google Scholar 

Download references


The authors thank P. G. Sørensen and L. B. Pedersen for construction of microsensors. Thanks to K. E. Thomsen for operating the TEM. B. B. Jørgensen is thanked for his general support. This research was financially supported by the European Research Council (L.P.N.), the Danish National Research Foundation (N.R.-P., C.P., K.U.K., L.S., M.D.), the Danish Council for Independent Research | Natural Sciences (FNU) (L.P.N.), the German Max Planck Society (N.R.-P., C.P., K.U.K., L.S.) and the Villum Foundation (M.D.).

Author information

Authors and Affiliations



This study was conceived by L.P.N., N.R.-P. and A.S. Experimental work: C.P. FISH and molecular phylogeny: S.L. Single-cell identification: K.U.K. and L.S. AFM: R.L.M., J.S. and M.D. SEM and EFM: J.S., M.D. and F.B. TEM: L.P.N. and J.S. Conductivity measurements using nanofabricated electro discs: J.S., Y.A.G., M.Y.E.-N., K.M.L. and C.P. All authors contributed to discussions of the data and preparation of the manuscript.

Corresponding authors

Correspondence to Nils Risgaard-Petersen or Lars Peter Nielsen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Supplementary Figure 1, Supplementary Table 1 and Supplementary References. (PDF 452 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pfeffer, C., Larsen, S., Song, J. et al. Filamentous bacteria transport electrons over centimetre distances. Nature 491, 218–221 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing