Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Non-invasive imaging through opaque scattering layers

Subjects

Abstract

Non-invasive optical imaging techniques, such as optical coherence tomography1,2,3, are essential diagnostic tools in many disciplines, from the life sciences to nanotechnology. However, present methods are not able to image through opaque layers that scatter all the incident light4,5. Even a very thin layer of a scattering material can appear opaque and hide any objects behind it6. Although great progress has been made recently with methods such as ghost imaging7,8 and wavefront shaping9,10,11, present procedures are still invasive because they require either a detector12 or a nonlinear material13 to be placed behind the scattering layer. Here we report an optical method that allows non-invasive imaging of a fluorescent object that is completely hidden behind an opaque scattering layer. We illuminate the object with laser light that has passed through the scattering layer. We scan the angle of incidence of the laser beam and detect the total fluorescence of the object from the front. From the detected signal, we obtain the image of the hidden object using an iterative algorithm14,15. As a proof of concept, we retrieve a detailed image of a fluorescent object, comparable in size (50 micrometres) to a typical human cell, hidden 6 millimetres behind an opaque optical diffuser, and an image of a complex biological sample enclosed between two opaque screens. This approach to non-invasive imaging through strongly scattering media can be generalized to other contrast mechanisms and geometries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the apparatus for non-invasive imaging through strongly scattering layers.
Figure 2: Experimental retrieval of the hidden object’s autocorrelation.
Figure 3: Comparison of the retrieved image with the hidden object.
Figure 4: Retrieval of a complex, biological structure.

Similar content being viewed by others

References

  1. Abramson, N. Light-in-flight recording by holography. Opt. Lett. 3, 121–123 (1978)

    Article  ADS  CAS  Google Scholar 

  2. Huang, D. et al. Optical coherence tomography. Science 254, 1178–1181 (1991)

    Article  ADS  CAS  Google Scholar 

  3. Nasr, M. B., Saleh, B. E. A., Sergienko, A. V. & Teich, M. C. Demonstration of dispersion-canceled quantum-optical coherence tomography. Phys. Rev. Lett. 91, 083601 (2003)

    Article  ADS  Google Scholar 

  4. Ntziachristos, V. Going deeper than microscopy: the optical imaging frontier in biology. Nature Methods 7, 603–614 (2010)

    Article  CAS  Google Scholar 

  5. Ishimaru, A., Sermsak, J. & Kuga, Y. Imaging through random multiple scattering media using integration of propagation and array signal processing. Waves Rand. Compl. Media 22, 24–39 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  6. Sheng, P. Introduction to Wave Scattering, Localization and Mesoscopic Phenomena (Academic, 1995)

    Google Scholar 

  7. Strekalov, D. V., Sergienko, A. V., Klyshko, D. N. & Shih, Y. H. Observation of two-photon “ghost” interference and diffraction. Phys. Rev. Lett. 74, 3600–3603 (1995)

    Article  ADS  CAS  Google Scholar 

  8. Bennink, R. S., Bentley, S. J. & Boyd, R. W. “Two-photon” coincidence imaging with a classical source. Phys. Rev. Lett. 89, 113601 (2002)

    Article  ADS  Google Scholar 

  9. Freund, I. Looking through walls and around corners. Physica A 168, 49–65 (1990)

    Article  ADS  Google Scholar 

  10. Mosk, A. P., Lagendijk, A., Lerosey, G. & Fink, M. Controlling waves in space and time for imaging and focusing in complex media. Nature Photon. 6, 283–292 (2012)

    Article  ADS  CAS  Google Scholar 

  11. Katz, O., Small, E. & Silberberg, Y. Focusing and compression of ultrashort pulses through scattering media. Nature Photon. 5, 372–377 (2011)

    Article  ADS  CAS  Google Scholar 

  12. van Putten, E. G. et al. Scattering lens resolves sub-100 nm structures with visible light. Phys. Rev. Lett. 106, 193905 (2011)

    Article  ADS  CAS  Google Scholar 

  13. Hsieh, C.-L., Pu, Y., Grange, R., Laporte, G. & Psaltis, D. Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle. Opt. Express 18, 20723–20731 (2010)

    Article  ADS  Google Scholar 

  14. Fienup, J. R. Phase retrieval algorithms: a comparison. Appl. Opt. 21, 2758–2769 (1982)

    Article  ADS  CAS  Google Scholar 

  15. Miao, J., Charalambous, P., Kirz, J. & Sayre, D. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature 400, 342–344 (1999)

    Article  ADS  CAS  Google Scholar 

  16. Gibson, A., Hebden, J. & Arridge, S. Recent advances in diffuse optical imaging. Phys. Med. Biol. 50, R1–R43 (2005)

    Article  ADS  CAS  Google Scholar 

  17. Culver, J. P., Ntziachristos, V., Holboke, M. J. & Yodh, A. G. Optimization of optode arrangements for diffuse optical tomography: a singular-value analysis. Opt. Lett. 26, 701–703 (2001)

    Article  ADS  CAS  Google Scholar 

  18. Fink, M. Time reversed acoustics. Phys. Today 50, 34–40 (1997)

    Article  Google Scholar 

  19. Yaqoob, Z., Psaltis, D., Feld, M. S. & Yang, C. Optical phase conjugation for turbidity suppression in biological samples. Nature Photon. 2, 110–115 (2008)

    Article  ADS  CAS  Google Scholar 

  20. Popoff, S. M. et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 104, 100601 (2010)

    Article  ADS  CAS  Google Scholar 

  21. Vellekoop, I. M. & Aegerter, C. Scattered light fluorescence microscopy: imaging through turbid layers. Opt. Lett. 35, 1245–1247 (2010)

    Article  ADS  Google Scholar 

  22. Feng, S., Kane, C., Lee, P. A. & Stone, A. D. Correlations and fluctuations of coherent wave transmission through disordered media. Phys. Rev. Lett. 61, 834–837 (1988)

    Article  ADS  CAS  Google Scholar 

  23. Freund, I., Rosenbluh, M. & Feng, S. Memory effects in propagation of optical waves through disordered media. Phys. Rev. Lett. 61, 2328–2331 (1988)

    Article  ADS  CAS  Google Scholar 

  24. Akkermans, E. & Montambaux, G. Mesoscopic Physics of Electrons and Photons 427–439 (Cambridge Univ. Press, 2007)

    Book  Google Scholar 

  25. Katz, T., Small, E. & Silberberg, Y. Looking around corners and through thin turbid layers in real time with scattered incoherent light. Nature Photon. 6, 549–553 (2012)

    Article  ADS  CAS  Google Scholar 

  26. Fienup, J. R. Reconstruction of an object from the modulus of its Fourier transform. Opt. Lett. 3, 27–29 (1978)

    Article  ADS  CAS  Google Scholar 

  27. Dainty J. C., ed. Laser Speckle and Related Phenomena (Springer, 1984)

    Google Scholar 

  28. Abbey, B. et al. Lensless imaging using broadband X-ray sources. Nature Photon. 5, 420–424 (2011)

    Article  ADS  CAS  Google Scholar 

  29. Thurman, S. T. & Fienup, J. R. Phase retrieval with signal bias. J. Opt. Soc. Am. A 26, 1008–1014 (2009)

    Article  ADS  Google Scholar 

  30. Wang, L. V. & Hu, S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335, 1458–1462 (2012)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank W. L. Barnes for discussions and for reading the manuscript, and M. Claessens, V. Subramaniam and J. Schleipen for discussions and for help with samples and equipment. This work is supported by the Stichting Technische Wetenschappen and the Stichting voor Fundamenteel Onderzoek der Materie, which are financially supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO). J.B. acknowledges a grant by FIRB-MIUR ‘Futuro in Ricerca’ (project RBFR08UH60). A.P.M. acknowledges a ‘Vidi’ grant from NWO and European Research Council grant no. 279248.

Author information

Authors and Affiliations

Authors

Contributions

All authors take full responsibility for the content of the paper.

Corresponding author

Correspondence to Jacopo Bertolotti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, Supplementary Figures 1-4 and Supplementary References. (PDF 230 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertolotti, J., van Putten, E., Blum, C. et al. Non-invasive imaging through opaque scattering layers. Nature 491, 232–234 (2012). https://doi.org/10.1038/nature11578

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11578

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing