Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An Earth-mass planet orbiting α Centauri B

Subjects

Abstract

Exoplanets down to the size of Earth have been found, but not in the habitable zone—that is, at a distance from the parent star at which water, if present, would be liquid. There are planets in the habitable zone of stars cooler than our Sun, but for reasons such as tidal locking and strong stellar activity, they are unlikely to harbour water–carbon life as we know it. The detection of a habitable Earth-mass planet orbiting a star similar to our Sun is extremely difficult, because such a signal is overwhelmed by stellar perturbations. Here we report the detection of an Earth-mass planet orbiting our neighbour star α Centauri B, a member of the closest stellar system to the Sun. The planet has an orbital period of 3.236 days and is about 0.04 astronomical units from the star (one astronomical unit is the Earth–Sun distance).

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Radial velocities of α Centauri B and fitting the long-timescale stellar signals.
Figure 2: Magnetic cycle of α Centauri B.
Figure 3: Fit of the rotational activity.
Figure 4: Periodograms of the radial-velocity residuals after removing the non-planetary signals.
Figure 5: Phase-folded radial-velocity curve with a period of 3.2357 d.

References

  1. 1

    Mayor, M. & Queloz, D. A Jupiter-mass companion to a solar-type star. Nature 378, 355–359 (1995)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Schneider, J., Dedieu, C., Le Sidaner, P., Savalle, R. & Zolotukhin, I. Defining and cataloging exoplanets: the exoplanet.eu database. Astron. Astrophys. 532, A79 (2011)

    ADS  Article  Google Scholar 

  3. 3

    Fuhrmann, K. et al. BESO échelle spectroscopy of solar-type stars at Cerro Armazones. Mon. Not. R. Astron. Soc. 411, 2311–2318 (2011)

    ADS  Article  Google Scholar 

  4. 4

    Valenti, J. A. & Fischer, D. A. Spectroscopic properties of cool stars (SPOCS). I. 1040 F, G, and K dwarfs from Keck, Lick, and AAT planet search programs. Astrophys. J. Suppl. Ser. 159, 141–166 (2005)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Santos, N. C. et al. Spectroscopic metallicities for planet-host stars: extending the samples. Astron. Astrophys. 437, 1127–1133 (2005)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Neuforge-Verheecke, C. & Magain, P. Spectroscopic analysis of the Alpha Centauri system. Astron. Astrophys. 328, 261–268 (1997)

    ADS  CAS  Google Scholar 

  7. 7

    Pourbaix, D. et al. Constraining the difference in convective blueshift between the components of α Centauri with precise radial velocities. Astron. Astrophys. 386, 280–285 (2002)

    ADS  Article  Google Scholar 

  8. 8

    Xie, J.-W., Zhou, J.-L. & Ge, J. Planetesimal accretion in binary systems: could planets form around α Centauri B? Astrophys. J. 708, 1566–1578 (2010)

    ADS  Article  Google Scholar 

  9. 9

    Thébault, P., Marzari, F. & Scholl, H. Planet formation in the habitable zone of α Centauri B. Mon. Not. R. Astron. Soc. 393, L21–L25 (2009)

    ADS  Article  Google Scholar 

  10. 10

    Lissauer, J. J., Ragozzine, D., Fabrycky, D. C., Steffen, J. H. & Ford, E. B. Architecture and dynamics of Kepler's candidate multiple transiting planet systems. Astrophys. J. Suppl. Ser. 197, 8 (2011)

    ADS  Article  Google Scholar 

  11. 11

    Latham, D. W., Rowe, J. F., Quinn, S. N., Batalha, N. M. & Borucki, W. J. A first comparison of Kepler planet candidates in single and multiple systems. Astrophys. J. 732, L24 (2011)

    ADS  Article  Google Scholar 

  12. 12

    Mayor, M. et al. The HARPS search for southern extra-solar planets. XXXIV. Occurrence, mass distribution and orbital properties of super-Earths and Neptune-mass planets. Astron. Astrophys.. (submitted); preprint at http://arxiv.org/abs/1109.2497 (2011)

  13. 13

    Lovis, C. et al. The HARPS search for southern extra-solar planets. XXVIII. Up to seven planets orbiting HD 10180: probing the architecture of low-mass planetary systems. Astron. Astrophys. 528, A112 (2011)

    Article  Google Scholar 

  14. 14

    Pepe, F. et al. The HARPS search for Earth-like planets in the habitable zone. Very low mass planets around HD29794, HD85512 and HD192310. Astron. Astrophys. 534, A58 (2011)

    Article  Google Scholar 

  15. 15

    Dumusque, X., Santos, N. C., Udry, S., Lovis, C. & Bonfils, X. Planetary detection limits taking into account stellar noise. II. Effect of stellar spot groups on radial-velocities. Astron. Astrophys. 527, A82 (2011)

    ADS  Article  Google Scholar 

  16. 16

    Kjeldsen, H. et al. Solar-like oscillations in Alpha Centauri B. Astrophys. J. 635, 1281–1290 (2005)

    ADS  Article  Google Scholar 

  17. 17

    Carrier, F. & Bourban, G. Solar-like oscillations in the K1 dwarf star alpha Cen B. Astron. Astrophys. 406, L23–L26 (2003)

    ADS  Article  Google Scholar 

  18. 18

    Del Moro, D. Solar granulation properties derived from three different time series. Astron. Astrophys. 428, 1007–1015 (2004)

    ADS  Article  Google Scholar 

  19. 19

    Title, A. M. et al. Statistical properties of solar granulation derived from the SOUP instrument on Spacelab 2. Astrophys. J. 336, 475–494 (1989)

    ADS  Article  Google Scholar 

  20. 20

    Dumusque, X., Udry, S., Lovis, C., Santos, N. C. & Monteiro, M. J. Planetary detection limits taking into account stellar noise. I. Observational strategies to reduce stellar oscillation and granulation effects. Astron. Astrophys. 525, A140 (2011)

    ADS  Article  Google Scholar 

  21. 21

    Boisse, I. et al. Disentangling between stellar activity and planetary signals. Astron. Astrophys. 528, A4 (2011)

    Article  Google Scholar 

  22. 22

    Howard, R. & Murdin, P. in Encyclopedia of Astronomy and Astrophysics (ed. Murdin, P.) 3173–3177 (Institute of Physics Publishing, 2000)

    Google Scholar 

  23. 23

    DeWarf, L. E., Datin, K. M. & Guinan, E. F. X-Ray, FUV, and UV observations of α Centauri B: determination of long-term magnetic activity cycle and rotation period. Astrophys. J. 722, 343–357 (2010)

    ADS  Article  Google Scholar 

  24. 24

    Meunier, N., Desort, M. & Lagrange, A.-M. Using the Sun to estimate Earth-like planets detection capabilities. II. Impact of plages. Astron. Astrophys. 512, A39 (2010)

    ADS  Article  Google Scholar 

  25. 25

    Gray, D. F. The Observation and Analysis of Stellar Photospheres (Cambridge Univ. Press, 1992)

    Google Scholar 

  26. 26

    Brandt, P. N. & Solanki, S. K. Solar line asymmetries and the magnetic filling factor. Astron. Astrophys. 231, 221–234 (1990)

    ADS  CAS  Google Scholar 

  27. 27

    Livingston, W. C. Magnetic fields, convection and solar luminosity variability. Nature 297, 208–209 (1982)

    ADS  Article  Google Scholar 

  28. 28

    Dravins, D. in Stellar Radial Velocities (eds Philip, A. G. D. & Latham, D. W.) 311–320 (IAU Colloquium 88, IAU, 1985)

    Google Scholar 

  29. 29

    Gray, D. F. The third signature of stellar granulation. Astrophys. J. 697, 1032–1043 (2009)

    ADS  Article  Google Scholar 

  30. 30

    Dravins, D., Larsson, B. & Nordlund, A. Solar Fe II line asymmetries and wavelength shifts. Astron. Astrophys. 158, 83–88 (1986)

    ADS  CAS  Google Scholar 

  31. 31

    Kaisig, M. & Durrant, C. J. The asymmetry of photospheric absorption lines. I — an analysis of mean solar line profiles. Astron. Astrophys. 116, 332–340 (1982)

    ADS  CAS  Google Scholar 

  32. 32

    Beckers, J. M. & Nelson, G. D. Some comments on the limb shift of solar lines. II — The effect of granular motions. Sol. Phys. 58, 243–261 (1978)

    ADS  CAS  Article  Google Scholar 

  33. 33

    Lovis, C. et al. The HARPS search for southern extra-solar planets. XXXI. Magnetic activity cycles in solar-type stars: statistics and impact on precise radial velocities. Astron. Astrophys.. (submitted); preprint at http://arxiv.org/abs/1107.5325 (2011)

  34. 34

    Wolszczan, A. & Kuchner, M. in Exoplanets (ed. Seager, S.) 175–190 (Univ. Arizona Press, 2010)

    Google Scholar 

  35. 35

    Zechmeister, M. & Kürster, M. The generalised Lomb-Scargle periodogram. A new formalism for the floating-mean and Keplerian periodograms. Astron. Astrophys. 496, 577–584 (2009)

    ADS  Article  Google Scholar 

  36. 36

    Kervella, P. et al. The diameters of α Centauri A and B. A comparison of the asteroseismic and VINCI / VLTI views. Astron. Astrophys. 404, 1087–1097 (2003)

    ADS  Article  Google Scholar 

  37. 37

    Selsis, F. et al. Habitable planets around the star Gliese 581? Astron. Astrophys. 476, 1373–1387 (2007)

    ADS  CAS  Article  Google Scholar 

  38. 38

    Bonfils, X. et al. The HARPS search for southern extra-solar planets. XXXI. The M-dwarf sample. Astron. Astrophys (submitted) preprint at <http://arxiv.org/abs/1111.5019>

  39. 39

    Mordasini, C., Alibert, Y., Benz, W. & Naef, D. Extrasolar planet population synthesis. II. Statistical comparison with observations. Astron. Astrophys. 501, 1161–1184 (2009)

    ADS  CAS  Article  Google Scholar 

  40. 40

    Cassan, A. et al. One or more bound planets per Milky Way star from microlensing observations. Nature 481, 167–169 (2012)

    ADS  CAS  Article  Google Scholar 

  41. 41

    Barnes, J. R. et al. The dependence of differential rotation on temperature and rotation. Mon. Not. R. Astron. Soc. 357, L1–L5 (2005)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The data presented here were obtained with the ESO 3.6-m telescope at La Silla Paranal Observatory, Chile. We thank the Swiss National Science Foundation (FNRS) for continuous support. We thank R. Mardeling for English revision. N.S. and X.D. acknowledge support by the European Research Council/European Community under FP7 through Starting Grant agreement number 239953, as well as from Fundacao para a Cîencia e a Tecnologia (FCT) through programme Cîencia 2007 funded by FCT/MCTES (Portugal) and POPH/FSE (EC), and in the form of grants PTDC/CTE-AST/098528/2008 and PTDC/CTE-AST/098604/2008.

Author information

Affiliations

Authors

Contributions

F.P., C.L., W.B., F.B., M.M., D.Q., N.S. and S.U. obtained data under the ESO programme ‘Searching for Earth-analogs around nearby stars with HARPS’. The HARPS spectrograph was designed and built by F.P., C.L., W.B., F.B., M.M., D.Q. and S.U. C.L. and D.S. performed the reduction of the data. Data analysis was carried out by X.D., J.S., F.P., D.S. and C.L. All the work was supervised by S.U. All authors discussed the results and contributed to the manuscript.

Corresponding authors

Correspondence to Xavier Dumusque or Francesco Pepe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data 1-9, Supplementary Figures 1-13, Supplementary Tables 1-2 and additional references. (PDF 4834 kb)

Supplementary Data

This text file contains all data used in our analysis, in tab-separated format. (TXT 56 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dumusque, X., Pepe, F., Lovis, C. et al. An Earth-mass planet orbiting α Centauri B. Nature 491, 207–211 (2012). https://doi.org/10.1038/nature11572

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing