Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Optical-field-induced current in dielectrics

An Addendum to this article was published on 19 March 2014

Abstract

The time it takes to switch on and off electric current determines the rate at which signals can be processed and sampled in modern information technology1,2,3,4. Field-effect transistors1,2,3,5,6 are able to control currents at frequencies of the order of or higher than 100 gigahertz, but electric interconnects may hamper progress towards reaching the terahertz (1012 hertz) range. All-optical injection of currents through interfering photoexcitation pathways7,8,9,10 or photoconductive switching of terahertz transients11,12,13,14,15,16 has made it possible to control electric current on a subpicosecond timescale in semiconductors. Insulators have been deemed unsuitable for both methods, because of the need for either ultraviolet light or strong fields, which induce slow damage or ultrafast breakdown17,18,19,20, respectively. Here we report the feasibility of electric signal manipulation in a dielectric. A few-cycle optical waveform reversibly increases—free from breakdown—the a.c. conductivity of amorphous silicon dioxide (fused silica) by more than 18 orders of magnitude within 1 femtosecond, allowing electric currents to be driven, directed and switched by the instantaneous light field. Our work opens the way to extending electronic signal processing and high-speed metrology into the petahertz (1015 hertz) domain.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Optical-field-induced conductivity and current control in a dielectric.
Figure 2: Carrier-envelope-phase control and intensity dependence of optical-field-generated electric current in SiO2.
Figure 3: Subfemtosecond control of electric current with the electric field of light.

References

  1. Kahng, D. Electric field controlled semiconductor device. US patent 3,102,230. (1963)

  2. Taur, Y. & Ning, T. H. Fundamentals of modern VLSI devices (Cambridge Univ. Press, 1998)

    Google Scholar 

  3. Liou, J. J. & Schwierz, F. Modern Microwave Transistors: Theory, Design and Performance (Wiley-Interscience, 2003)

    Google Scholar 

  4. Caulfield, H. J. & Dolev, S. Why future supercomputing requires optics. Nature Photon. 4, 261–263 (2010)

    Article  CAS  Google Scholar 

  5. Schwierz, F. & Liou, J. J. RF transistors: recent developments and roadmap toward terahertz applications. Solid-State Electron. 51, 1079–1091 (2007)

    Article  ADS  CAS  Google Scholar 

  6. . et al. Low noise amplification at 0.67 THz using 30 nm InP HEMTs. IEEE Microw. Wirel. Compon. Lett. 21, 368–370 (2011)

  7. Kurizki, G., Shapiro, M. & Brumer, P. Phase-coherent control of photocurrent directionality in semiconductors. Phys. Rev. B 39, 3435–3437 (1989)

    Article  ADS  CAS  Google Scholar 

  8. Atanasov, R., Hache, A., Hughes, J. L. P., van Driel, H. M. & Sipe, J. E. Coherent control of photocurrent generation in bulk semiconductors. Phys. Rev. Lett. 76, 1703–1706 (1996)

    Article  ADS  CAS  Google Scholar 

  9. Prechtel, L. et al. Time-resolved picosecond photocurrents in contacted carbon nanotubes. Nano Lett. 11, 269–272 (2011)

    Article  ADS  CAS  Google Scholar 

  10. Franco, I., Shapiro, M. & Brumer, P. Robust ultrafast currents in molecular wires through stark shifts. Phys. Rev. Lett. 99, 126802 (2007)

    Article  ADS  Google Scholar 

  11. Valley, G. C. Photonic analog-to-digital converters. Opt. Express 15, 1955–1982 (2007)

    Article  ADS  Google Scholar 

  12. Nagatsuma, T. Photonic measurement technologies for high-speed electronics. Meas. Sci. Technol. 13, 1655–1663 (2002)

    Article  ADS  CAS  Google Scholar 

  13. Auston, D. H. Picosecond optoelectronic switching and gating in silicon. Appl. Phys. Lett. 26, 101–103 (1975)

    Article  ADS  CAS  Google Scholar 

  14. Auston, D. H. Ultrafast optoelectronics.. Top. Appl.Phys. 60, 183–233 (1988)

    Google Scholar 

  15. Shimosato, H., Ashida, M., Itoh, T., Saito, S. & Sakai, K. in Ultrafast Optics V (eds Watanabe, S. & Midorikawa, K.) 317–323 (Springer Ser. Opt. 132, Springer, 2007)

    Book  Google Scholar 

  16. Katzenellenbogen, N. & Grischkowsky, D. Efficient generation of 380 fs pulses of THz radiation by ultrafast laser-pulse excitation of a biased metal-semiconductor interface. Appl. Phys. Lett. 58, 222–224 (1991)

    Article  ADS  CAS  Google Scholar 

  17. Zener, C. A theory of the electrical breakdown of solid dielectrics. Proc. R. Soc. Lond. A 145, 523–529 (1934)

    Article  ADS  CAS  Google Scholar 

  18. Rethfeld, B. Free-electron generation in laser-irradiated dielectrics. Phys. Rev. B 73, 035101 (2006)

    Article  ADS  Google Scholar 

  19. Jones, S. C., Braunlich, P., Casper, R. T., Shen, X. A. & Kelly, P. Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical-materials. Opt. Eng. 28, 1039–1068 (1989)

    Article  ADS  CAS  Google Scholar 

  20. Lenzner, M. et al. Femtosecond optical breakdown in dielectrics. Phys. Rev. Lett. 80, 4076–4079 (1998)

    Article  ADS  CAS  Google Scholar 

  21. Schwierz, F., Wong, H. & Liou, J. J. Nanometer CMOS (Pan Stanford, 2010)

    Book  Google Scholar 

  22. Koslowski, T., Kob, W. & Vollmayr, K. Numerical study of the electronic structure of amorphous silica. Phys. Rev. B 56, 9469–9476 (1997)

    Article  ADS  CAS  Google Scholar 

  23. Xu, L. et al. Route to phase control of ultrashort light pulses. Opt. Lett. 21, 2008–2010 (1996)

    Article  ADS  CAS  Google Scholar 

  24. Kienberger, R. et al. Atomic transient recorder. Nature 427, 817–821 (2004)

    Article  ADS  CAS  Google Scholar 

  25. Wannier, G. H. Wave functions and effective Hamiltonian for Bloch electrons in an electric field. Phys. Rev. 117, 432–439 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  26. Bleuse, J., Bastard, G. & Voisin, P. Electric-field-induced localization and oscillatory electro-optical properties of semiconductor superlattices. Phys. Rev. Lett. 60, 220–223 (1988)

    Article  ADS  CAS  Google Scholar 

  27. Mendez, E. E., Agulló-Rueda, F. & Hong, J. M. Stark localization in GaAs-GaAlAs superlattices under an electric field. Phys. Rev. Lett. 60, 2426–2429 (1988)

    Article  ADS  CAS  Google Scholar 

  28. Bar-Joseph, I. et al. Room-temperature electroabsorption and switching in a GaAs/AlGaAs superlattice. Appl. Phys. Lett. 55, 340–342 (1989)

    Article  ADS  CAS  Google Scholar 

  29. Durach, M., Rusina, A., Kling, M. F. & Stockman, M. I. Metallization of nanofilms in strong adiabatic electric fields. Phys. Rev. Lett. 105, 086803 (2010)

    Article  ADS  Google Scholar 

  30. Durach, M., Rusina, A., Kling, M. F. & Stockman, M. I. Predicted ultrafast dynamic metallization of dielectric nanofilms by strong single-cycle optical fields. Phys. Rev. Lett. 107, 086602 (2011)

    Article  ADS  Google Scholar 

  31. Schultze, M. et al. Controlling dielectrics with the electric field of light. Nature doi:10.1038/nature11720 (this issue).

Download references

Acknowledgements

We thank P. Altpeter and Y. Deng for technical support and discussions, and we thank the Munich-Centre for Advanced Photonics for financial support. A.S. acknowledges the Alexander von Humboldt Foundation and the Swiss National Science Foundation. N.K. acknowledges the Alexander von Humboldt Foundation. The work of M.I.S. and V.A. was supported by the Chemical Sciences, Biosciences and Geosciences Division (grant no. DEFG02-01ER15213) and by the Materials Sciences and Engineering Division (grant no. DE-FG02-11ER46789) of the Office of the Basic Energy Sciences, Office of Science, US Department of Energy. R.K. acknowledges an ERC Starting Grant.

Author information

Authors and Affiliations

Authors

Contributions

A.S., R.K., R.E. and F.K. designed and supervised the experiments. A.S., T.P.-C., D.G., S.M., J.R. and J.V.B. participated in sample design and fabrication. A.S., T.P.-C., N.K., D.G., S.M., M.S. and S.H. performed the measurements. A.S., N.K., V.A., M.K., V.S.Y. and M.I.S. took part in the theoretical modelling. A.S., T.P.-C., N.K., R.K., R.E., V.S.Y. and F.K. analysed and interpreted the experimental data. All authors discussed the results and contributed to the final manuscript.

Corresponding authors

Correspondence to Agustin Schiffrin, Mark I. Stockman or Ferenc Krausz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data 1-4, Supplementary Figures 1-10 and additional references. (PDF 1394 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schiffrin, A., Paasch-Colberg, T., Karpowicz, N. et al. Optical-field-induced current in dielectrics. Nature 493, 70–74 (2013). https://doi.org/10.1038/nature11567

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11567

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing