Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The elusive Hadean enriched reservoir revealed by 142Nd deficits in Isua Archaean rocks



The first indisputable evidence for very early differentiation of the silicate Earth came from the extinct 146Sm–142Nd chronometer. 142Nd excesses measured in 3.7-billion-year (Gyr)-old rocks from Isua1,2 (southwest Greenland) relative to modern terrestrial samples imply their derivation from a depleted mantle formed in the Hadean eon (about 4,570–4,000 Gyr ago). As dictated by mass balance, the differentiation event responsible for the formation of the Isua early-depleted reservoir must also have formed a complementary enriched component. However, considerable efforts to find early-enriched mantle components in Isua have so far been unsuccessful3,4,5,6,7. Here we show that the signature of the Hadean enriched reservoir, complementary to the depleted reservoir in Isua, is recorded in 3.4-Gyr-old mafic dykes intruding into the Early Archaean rocks. Five out of seven dykes carry 142Nd deficits compared to the terrestrial Nd standard, with three samples yielding resolvable deficits down to −10.6 parts per million. The enriched component that we report here could have been a mantle reservoir that differentiated owing to the crystallization of a magma ocean, or could represent a mafic proto-crust that separated from the mantle more than 4.47 Gyr ago. Our results testify to the existence of an enriched component in the Hadean, and may suggest that the southwest Greenland mantle preserved early-formed heterogeneities until at least 3.4 Gyr ago.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Compilation of all published initial 142 Nd/ 144 Nd ratios for terrestrial samples.
Figure 2: μ 142 Nd values measured for the Ameralik dykes.
Figure 3: Evolution model of the Ameralik dyke reservoir.
Figure 4: From the accretion of the Earth to the differentiation of the Ameralik dyke source.


  1. Boyet, M. et al. 142Nd evidence for early Earth differentiation. Earth Planet. Sci. Lett. 214, 427–442 (2003)

    ADS  CAS  Google Scholar 

  2. Caro, G., Bourdon, B., Birck, J. L. & Moorbath, S. High precision 142Nd/144Nd measurements in terrestrial rocks: constraints on the early differentiation of the Earth’s mantle. Geochim. Cosmochim. Acta 70, 164–191 (2006)

    ADS  CAS  Google Scholar 

  3. Andreasen, R., Sharma, M., Subbarao, K. V. & Viladkar, S. G. Where on Earth is the enriched Hadean reservoir? Earth Planet. Sci. Lett. 266, 14–28 (2008)

    ADS  CAS  Google Scholar 

  4. Upadhyay, D., Scherer, E. & Mezger, K. 142Nd evidence for an enriched Hadean reservoir in cratonic roots. Nature 459, 1118–1121 (2009)

    ADS  CAS  PubMed  Google Scholar 

  5. Murphy, D. T. et al. In search of a hidden long-term isolated sub-chondritic 142Nd/144Nd reservoir in the deep mantle: implications for the Nd isotope systematics of the Earth. Geochim. Cosmochim. Acta 74, 738–750 (2010)

    ADS  CAS  Google Scholar 

  6. Cipriani, A., Bonatti, E. & Carlson, R. W. Non-chondritic 142Nd in sub-oceanic mantle peridotites. Geochem. Geophys. Geosyst. 12, 1–8 (2011)

    Google Scholar 

  7. Jackson, M. G. & Carlson, R. W. Homogeneous superchondritic 142Nd/144Nd in the mid-ocean ridge basalt and ocean island basalt mantle. Geochem. Geophys. Geosyst. 13, 1–10 (2012)

    Google Scholar 

  8. Kinoshita, N. et al. A shorter 146Sm half-life measured and implications for 146Sm-142Nd chronology in the Solar System. Science 335, 1614–1617 (2012)

    ADS  CAS  PubMed  Google Scholar 

  9. Rizo, H., Boyet, M., Blichert-Toft, J. & Rosing, M. Combined Nd and Hf isotope evidence for deep-seated source of Isua lavas. Earth Planet. Sci. Lett. 312, 267–279 (2011)

    ADS  CAS  Google Scholar 

  10. Harper, C. L. & Jacobsen, S. B. Evidence from coupled 147Sm–143Nd and 146Sm–142Nd systematics for very early (4.5-Gyr) differentiation of the Earth’s mantle. Nature 360, 728–732 (1992)

    ADS  CAS  Google Scholar 

  11. Caro, G., Bourdon, B., Birck, J.-L. & Moorbath, S. 146Sm–142Nd evidence from Isua metamorphosed sediments for early differentiation of the Earth’s mantle. Nature 423, 428–432 (2003)

    ADS  CAS  PubMed  Google Scholar 

  12. Bennett, V. C., Brandon, A. D. & Nutman, A. P. Coupled 142Nd-143Nd isotopic evidence for Hadean mantle dynamics. Science 318, 1907–1910 (2007)

    ADS  CAS  PubMed  Google Scholar 

  13. Boyet, M. & Carlson, R. W. A new geochemical model for the Earth’s mantle inferred from 146Sm-142Nd systematics. Earth Planet. Sci. Lett. 250, 254–268 (2006)

    ADS  CAS  Google Scholar 

  14. Blichert-Toft, J. & Puchtel, I. S. Depleted mantle sources through time: evidence from Lu-Hf and Sm-Nd isotope systematics of Archean komatiites. Earth Planet. Sci. Lett. 297, 598–606 (2010)

    ADS  CAS  Google Scholar 

  15. Blichert-Toft, J. & Albarède, F. Hafnium isotopes in Jack Hills zircons and the formation of the Hadean crust. Earth Planet. Sci. Lett. 265, 686–702 (2008)

    ADS  CAS  Google Scholar 

  16. Kemp, A. I. S. et al. Hadean crustal evolution revisited: new constraints for Pb-Hf isotope systematics of the Jack Hills zircons. Earth Planet. Sci. Lett. 296, 45–56 (2010)

    ADS  CAS  Google Scholar 

  17. O’Neil, J., Carlson, R. W., Francis, D. & Stevenson, R. K. Neodymium-142 evidence for Hadean mafic crust. Science 321, 1828–1831 (2008)

    ADS  PubMed  Google Scholar 

  18. Gill, C. O. & Bridgwater, D. The Ameralik dykes of west Greenland, the earliest known basaltic rocks intruding stable continental crust. Earth Planet. Sci. Lett. 29, 276–282 (1976)

    ADS  CAS  Google Scholar 

  19. Nielsen, S. G., Baker, A. J. & Krogstad, E. J. Petrogenesis of an early Archean (3.4 Ga) norite dyke, Isua, West Greenland: evidence for early Archean crustal recycling? Precambr. Res. 118, 133–148 (2002)

    ADS  CAS  Google Scholar 

  20. Nutman, A. P., Friend, C. R. L., Bennett, V. C. & McGregor, V. R. Dating of Ameralik dike swarms of the Nuuk district, southern West Greenland: mafic intrusion events starting from 3510 Ma. J. Geol. Soc. Lond. 161, 421–430 (2004)

    CAS  Google Scholar 

  21. Boyet, M. & Carlson, R. W. 142Nd evidence for early (>4.53 Ga) global differentiation of the silicate Earth. Science 309, 576–581 (2005)

    ADS  CAS  PubMed  Google Scholar 

  22. Caro, G. & Bourdon, B. Non-chondritic Sm/Nd ratio in the terrestrial planets: consequences for the geochemical evolution for the mantle-crust system. Geochim. Cosmochim. Acta 74, 3333–3349 (2010)

    ADS  CAS  Google Scholar 

  23. DePaolo, D. J. in Neodymium Isotope Geochemistry. An Introduction 36 (Minerals and Rocks Series no. 20, Springer, 1988)

    Google Scholar 

  24. Kamber, B. S., Collerson, K. D., Moorbath, S. & Whitehouse, M. J. Inheritance of early Archean Pb-isotope variability from long-lived Hadean protocrust. Contrib. Mineral. Petrol. 145, 25–46 (2003)

    ADS  CAS  Google Scholar 

  25. Bennett, V. C., Nutman, A. P. & McCulloch, M. T. Nd isotopic evidence for transient, highly depleted mantle reservoirs in the early history of the Earth. Earth Planet. Sci. Lett. 119, 299–317 (1993)

    ADS  CAS  Google Scholar 

  26. Carlson, R. W. & Boyet, M. Composition of the Earth's interior: the importance of early events. Phil. Trans. R. Soc. A 366, 4077–4103 (2008)

    ADS  CAS  PubMed  Google Scholar 

  27. Blichert-Toft, J. & Albarède, F. Short-lived chemical heterogeneities in the Archean mantle with implications for mantle convection. Science 263, 1593–1596 (1994)

    ADS  CAS  PubMed  Google Scholar 

  28. Coltice, C. & Schmalzl, J. Mixing time in the mantle of the early Earth derived from 2-D and 3-D numerical simulations of convection. Geophys. Res. Lett. 33, L23304 (2006)

    ADS  Google Scholar 

  29. Touboul, M., Putchtel, I. S. & Walker, R. J. 182W Evidence for long-term preservation of Early mantle differentiation products. Science 335, 1065–1069 (2012)

    ADS  CAS  PubMed  Google Scholar 

  30. Bouvier, A., Vervoort, J. D. & Patchett, P. J. The Lu-Hf and Sm-Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 273, 48–57 (2008)

    ADS  CAS  Google Scholar 

  31. Müller, W., Shelley, M., Miller, P. & Broude, S. Initial performance metrics of a new custom-designed ArF excimer LA-ICPMS system coupled to a two-volume laser-ablation cell. J. Anal. At. Spectrom. 24, 209–214 (2009)

    Google Scholar 

  32. Tiepolo, M. In situ Pb geochronology of zircon with laser ablation-inductively coupled plasma-sector field mass spectrometry. Chem. Geol. 141, 1–19 (2003)

    Google Scholar 

  33. Paquette, J. L. & Tiepolo, M. High-resolution (5 µm) U-Th-Pb isotopes dating of monazite with excimer laser ablation (ELA)-ICPMS. Chem. Geol. 240, 222–237 (2007)

    ADS  CAS  Google Scholar 

  34. Jackson, S. E., Pearson, N. J., Griffin, W. L. & Belousova, E. A. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem. Geol. 211, 47–69 (2004)

    ADS  CAS  Google Scholar 

  35. Wiedenbeck, M. et al. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostand. Newsl. 19, 1–23 (1995)

    CAS  Google Scholar 

  36. van Achtenberg, E., Ryan, C. G., Jackson, S. E. & Griffin, W. L. Laser ablation-ICPMS in the earth science. Mineral. Assoc. Can. 29, 239–243 (2001)

    Google Scholar 

  37. Ludwig, K. R. User’s Manual for Isoplot/Ex Version 2.49, a Geochronological Toolkit for Microsoft Excel (Berkeley Geochronological Center, 2001)

    Google Scholar 

  38. Horn, I., Rudnick, R. L. & McDonough, W. F. Precise elemental and isotope ratio determination by simultaneous solution nebulization and laser ablation-ICP-MS: application to U-Pb geochronology. Chem. Geol. 164, 281–301 (2000)

    ADS  CAS  Google Scholar 

  39. Horn, I. & von Blanckenburg, F. Investigation of elemental and isotopic fractionation during 196 nm femtosecond laser ablation multiple collector inductively coupled plasma mass spectrometry. Spectrochim. Acta B 62, 410–422 (2007)

    ADS  Google Scholar 

  40. Heaman, L. M. & LeCheminant, A. M. Paragenesis and U-Pb systematics of baddeleyite (ZrO2). Chem. Geol. 110, 95–126 (1993)

    ADS  CAS  Google Scholar 

  41. Pin, C. & Santos Zalduegui, J. F. Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: application to isotopic analyses of silicate rocks. Anal. Chim. Acta 339, 79–89 (1997)

    CAS  Google Scholar 

  42. Blichert-Toft, J., Chauvel, C. & Albarède, F. Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS. Contrib. Mineral. Petrol. 127, 248–260 (1997)

    ADS  CAS  Google Scholar 

  43. Bouvier, A., Vervoort, J. D. & Patchett, P. J. The Lu-Hf and Sm-Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 273, 48–57 (2008)

    ADS  CAS  Google Scholar 

  44. Blichert-Toft, J., Boyet, M., Télouk, P. & Albarède, F. 147Sm/143Nd and 176Lu/176Hf in eucrites and the differentiation of the HED parent body. Earth Planet. Sci. Lett. 204, 167–181 (2002)

    ADS  CAS  Google Scholar 

  45. Tanaka, T. et al. JNdi-1: a neodymium isotopic reference in consistency with La Jolla neodymium. Chem. Geol. 168, 279–281 (2000)

    ADS  Google Scholar 

  46. Rizo, H., Boyet, M., Blichert-Toft, J. & Rosing, M. Combined Nd and Hf isotope evidence for deep-seated source of Isua lavas. Earth Planet. Sci. Lett. 312, 267–279 (2011)

    ADS  CAS  Google Scholar 

  47. Andreasen, R. & Sharma, M. Fractionation and mixing in a thermal ionization mass spectrometer source: implications and limitations for high-precision Nd isotope analyses. Int. J. Mass Spectrom. 285, 49–57 (2009)

    CAS  Google Scholar 

Download references


We thank C. Bosq for providing clean-laboratory facilities, D. Auclair for assistance with the TIMS, P. Télouk for assistance with the MC-ICP-MS, and J. L. Devidal for assistance with the Microprobe and the LA-ICP-MS. M. Benbakkar carried out the major element analyses. We thank A. Brandon and M. Jackson for comments that helped clarify the manuscript. We thank the Geological Survey of Japan for providing the isotopic standard JNdi-1. The research leading to these results has received funding from the European Research Council under the European Community’s Seventh Framework Programme (to M.B.), the French Programme National de Planétologie of the Institut National des Sciences de l’Univers and Centre National d’Etudes Spatiales, and the French Agence Nationale de la Recherche (grants BEGDy and M&Ms) (to J.B.T.), and the French embassy in Denmark (to M.R.). This is Laboratory of Excellence ClerVolc contribution no. 30.

Author information

Authors and Affiliations



Samples from the Ameralik dykes were collected by H.R., M.B., J.O’N. and M.T.R. U–Pb analyses were carried out by J.-L.P. Preparation of samples, dissolution, spike calculations, chemical separation of Sm, Nd, Lu, and Hf and isotopic analyses and modelling of data were carried out by J.B.-T., H.R. and M.B. Manuscript preparation was carried out by H.R., M.B., J.O’N. and J.B.-T., and all the authors contributed to discussing the results and their implications.

Corresponding author

Correspondence to Hanika Rizo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text, Supplementary Figures 1-12, Supplementary Table 1 and Supplementary References. (PDF 5958 kb)

Supplementary Data 1

This table shows GPS locations for the Ameralik dykes analysed. (XLS 27 kb)

Supplementary Data 2

This table contains major and trace element data for Ameralik dykes of the Amitsoq Complex. (XLS 48 kb)

Supplementary Data 3

This table shows Sm - Nd and Lu - Hf isotope data for Ameralik dykes (whole rock) of the Amitsoq Complex. (XLS 33 kb)

Supplementary Data 4

This table shows U-Pb data from Ameralik Dyke obtained by in situ Laser Ablation ICP-MS. (XLS 68 kb)

Supplementary Data 5

This table shows Nd isotope comparisons measured for the Ameralik dykes (Southwest Greenland), one amphibolite of the Isua Supracrustal belt and the terrestrial Nd standard JNdi-1. (XLS 275 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rizo, H., Boyet, M., Blichert-Toft, J. et al. The elusive Hadean enriched reservoir revealed by 142Nd deficits in Isua Archaean rocks. Nature 491, 96–100 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing