Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Colloids with valence and specific directional bonding

Abstract

The ability to design and assemble three-dimensional structures from colloidal particles is limited by the absence of specific directional bonds. As a result, complex or low-coordination structures, common in atomic and molecular systems, are rare in the colloidal domain. Here we demonstrate a general method for creating the colloidal analogues of atoms with valence: colloidal particles with chemically distinct surface patches that imitate hybridized atomic orbitals, including sp, sp2, sp3, sp3d, sp3d2 and sp3d3. Functionalized with DNA with single-stranded sticky ends, patches on different particles can form highly directional bonds through programmable, specific and reversible DNA hybridization. These features allow the particles to self-assemble into ‘colloidal molecules’ with triangular, tetrahedral and other bonding symmetries, and should also give access to a rich variety of new microstructured colloidal materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DNA patchy particle fabrication.
Figure 2: Control of patch size.
Figure 3: Specific directional bonding between colloidal atoms observed with optical microscopes.
Figure 4: Step-wise sequential kinetics of supracolloidal reactions.

Similar content being viewed by others

References

  1. Glotzer, S. C. & Solomon, M. J. Anisotropy of building blocks and their assembly into complex structures. Nature Mater. 6, 557–562 (2007)

    Article  Google Scholar 

  2. Sacanna, S. & Pine, D. J. Shape-anisotropic colloids: building blocks for complex assemblies. Curr. Opin. Colloid Interf. Sci. 16, 96–105 (2011)

    Article  CAS  Google Scholar 

  3. Rossi, L. et al. Cubic crystals from cubic colloids. Soft Matter 7, 4139–4142 (2011)

    Article  ADS  CAS  Google Scholar 

  4. Meng, G., Arkus, N., Brenner, M. P. & Manoharan, V. N. The free-energy landscape of clusters of attractive hard spheres. Science 327, 560–563 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Manoharan, V. N., Elsesser, M. T. & Pine, D. J. Dense packing and symmetry in small clusters of microspheres. Science 301, 483–487 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Kraft, D. J. et al. Self-assembly of colloids with liquid protrusions. J. Am. Chem. Soc. 131, 1182–1186 (2009)

    Article  CAS  PubMed  Google Scholar 

  7. Sacanna, S., Irvine, W. T. M., Chaikin, P. M. & Pine, D. J. Lock and key colloids. Nature 464, 575–578 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Zoldesi, C. I., van Walree, C. A. & Imhof, A. Deformable hollow hybrid silica/siloxane colloids by emulsion templating. Langmuir 22, 4343–4352 (2006)

    Article  CAS  PubMed  Google Scholar 

  9. Li, F., Josephson, D. P. & Stein, A. Colloidal assembly: the road from particles to colloidal molecules and crystals. Angew. Chem. Int. Edn 50, 360–388 (2011)

    Article  CAS  Google Scholar 

  10. Leunissen, M. E. et al. Ionic colloidal crystals of oppositely charged particles. Nature 437, 235–240 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Macfarlane, R. J. et al. Nanoparticle superlattice engineering with DNA. Science 334, 204–208 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Velikov, K. P., Christova, C. G., Dullens, R. P. A. & van Blaaderen, A. Layer-by-layer growth of binary colloidal crystals. Science 296, 106–109 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Ho, K. M., Chan, C. T. & Soukoulis, C. M. Existence of a photonic gap in periodic dielectric structures. Phys. Rev. Lett. 65, 3152–3155 (1990)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Nelson, D. R. Toward a tetravalent chemistry of colloids. Nano Lett. 2, 1125–1129 (2002)

    Article  ADS  CAS  Google Scholar 

  15. Glotzer, S. C. Some assembly required. Science 306, 419–420 (2004)

    Article  CAS  PubMed  Google Scholar 

  16. Manoharan, V. N. Building Materials with Colloidal Spheres. PhD thesis, Univ. California, Santa Barbara. (2004)

  17. Breed, D. R. Engineered Colloids: Patchy Particles with Reversible, Directional Interactions. PhD thesis, Univ. California, Santa Barbara. (2007)

  18. Bianchi, E., Blaak, R. & Likos, C. N. Patchy colloids: state of the art and perspectives. Phys. Chem. Chem. Phys. 13, 6397–6410 (2011)

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, Z. & Glotzer, S. C. Self-assembly of patchy particles. Nano Lett. 4, 1407–1413 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Xu, X., Rosi, N. L., Wang, Y., Huo, F. & Mirkin, C. A. Asymmetric functionalization of gold nanoparticles with oligonucleotides. J. Am. Chem. Soc. 128, 9286–9287 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Huo, F., Lytton-Jean, A. K. R. & Mirkin, C. A. Asymmetric functionalization of nanoparticles based on thermally addressable DNA interconnects. Adv. Mater. 18, 2304–2306 (2006)

    Article  CAS  Google Scholar 

  22. Hong, L., Cacciuto, A., Luijten, E. & Granick, S. Clusters of amphiphilic colloidal spheres. Langmuir 24, 621–625 (2008)

    Article  CAS  PubMed  Google Scholar 

  23. Chen, Q., Bae, S. C. & Granick, S. Directed self-assembly of a colloidal kagome lattice. Nature 469, 381–384 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Jones, M. R., Macfarlane, R. J., Prigodich, A. E., Patel, P. C. & Mirkin, C. A. Nanoparticle shape anisotropy dictates the collective behavior of surface-bound ligands. J. Am. Chem. Soc. 133, 18865–18869 (2011)

    Article  CAS  PubMed  Google Scholar 

  25. Kraft, D. J., Groenewold, J. & Kegel, W. K. Colloidal molecules with well-controlled bond angles. Soft Matter 5, 3823–3826 (2009)

    Article  ADS  CAS  Google Scholar 

  26. Cho, Y.-S. et al. Particles with coordinated patches or windows from oil-in-water emulsions. Chem. Mater. 19, 3183–3193 (2007)

    Article  CAS  Google Scholar 

  27. Zhang, G., Wang, D. & Möhwald, H. Patterning microsphere surfaces by templating colloidal crystals. Nano Lett. 5, 143–146 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Pawar, A. B. & Kretzschmar, I. Multifunctional patchy particles by glancing angle deposition. Langmuir 25, 9057–9063 (2009)

    Article  CAS  PubMed  Google Scholar 

  29. Pawar, A. B. & Kretzschmar, I. Fabrication, assembly, and application of patchy particles. Macromol. Rapid Commun. 31, 150–168 (2010)

    Article  CAS  PubMed  Google Scholar 

  30. Ottewill, R. & Shaw, J. Studies on the preparation and characterization of monodisperse polystyrene lattices. Colloid Polym. Sci. 215, 161–166 (1967)

    CAS  Google Scholar 

  31. Ugelstad, J., Kaggerud, K. H., Hansen, F. K. & Berge, A. Absorption of low molecular weight compounds in aqueous dispersions of polymer-oligomer particles, 2: A two step swelling process of polymer particles giving an enormous increase in absorption capacity. Makromol. Chem. 180, 737–744 (1979)

    Article  CAS  Google Scholar 

  32. Ugelstad, J. et al. Thermodynamics of swelling. Preparation and application of some composite, monosized polymer particles. Makromol. Chem. 10, 215–234 (1985)

    Article  Google Scholar 

  33. Walther, A. & Muller, A. H. E. Janus particles. Soft Matter 4, 663–668 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Zerrouki, D. et al. Preparation of doublet, triangular, and tetrahedral colloidal clusters by controlled emulsification. Langmuir 22, 57–62 (2006)

    Article  CAS  PubMed  Google Scholar 

  35. Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Alivisatos, A. P. et al. Organization of ‘nanocrystal molecules’ using DNA. Nature 382, 609–611 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Leunissen, M. E. et al. Switchable self-protected attractions in DNA-functionalized colloids. Nature Mater. 8, 590–595 (2009)

    Article  ADS  CAS  Google Scholar 

  38. Nykypanchuk, D., Maye, M. M., van der Lelie, D. & Gang, O. DNA-guided crystallization of colloidal nanoparticles. Nature 451, 549–552 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Zhang, Z., Keys, A. S., Chen, T. & Glotzer, S. C. Self-assembly of patchy particles into diamond structures through molecular mimicry. Langmuir 21, 11547–11551 (2005)

    Article  CAS  PubMed  Google Scholar 

  40. Chen, Q. et al. Supracolloidal reaction kinetics of Janus spheres. Science 331, 199–202 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Dreyfus, R. et al. Aggregation-disaggregation transition of DNA-coated colloids: Experiments and theory. Phys. Rev. E 81, 041404 (2010)

    Article  ADS  CAS  Google Scholar 

  42. van Kampen, N. G. Stochastic Processes in Physics and Chemistry 3rd edn, 292–297 (Elsevier, 2007)

    Book  Google Scholar 

  43. Romano, F., Sanz, E. & Sciortino, F. Crystallization of tetrahedral patchy particles in silico. J. Chem. Phys. 134, 174502–174508 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Johnson, P. M., van Kats, C. M. & van Blaaderen, A. Synthesis of colloidal silica dumbbells. Langmuir 21, 11510–11517 (2005)

    Article  CAS  PubMed  Google Scholar 

  45. Perro, A. et al. A chemical synthetic route towards “colloidal molecules”. Angew. Chem. Int. Edn 48, 361–365 (2009)

    Article  CAS  Google Scholar 

  46. Frenkel, D. Playing tricks with designer “atoms”. Science 296, 65–66 (2002)

    Article  CAS  PubMed  Google Scholar 

  47. Miller, M. A. & Wales, D. J. Novel structural motifs in clusters of dipolar spheres: knots, links, and coils. J. Phys. Chem. B 109, 23109–23112 (2005)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. T. Elsesser, D. Kraft, and G.-R. Yi for discussions. This work was supported partially by the MRSEC Program of the National Science Foundation under award number DMR-0820341. Additional financial support was provided by the National Science Foundation (ChE-0911460). We acknowledge support from the MRI programme of the National Science Foundation under award number DMR-0923251 for the purchase of a Zeiss field emission scanning electron microscope.

Author information

Authors and Affiliations

Authors

Contributions

V.N.M. and D.J.P. thought of patchy particles and how to make them. D.R.B. developed the functionalization of patches. Yufeng Wang and Yu Wang optimized the control of patch size and DNA functionalization, performed the experiments, and collected and analysed the data. A.D.H. helped with particle synthesis. L.F. designed the DNA sequences and modelled the kinetics. M.W. and D.J.P. supervised the project. D.J.P., Yufeng Wang and Yu Wang wrote the paper with revisions from all of the authors.

Corresponding authors

Correspondence to Marcus Weck or David J. Pine.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-5, Supplementary Equation 1 and Supplementary Table 1. (PDF 8222 kb)

ABn colloidal molecules

A collection of ABn (n=1-4) colloidal molecules assembled from monovalent, divalent, trivalent or tetravalent particles at the central position. Particles were suspended in an aqueous PBS buffer solution (pH=7.4) containing surfactant (1% w/w Pluronic F127). The system had been stabilized for a few hours at 25˚C and the video was taken at 25˚C. The video is acquired and displayed at real time. Scale bar, 2 μm. (MOV 2646 kb)

Kinetics of AB4 colloidal molecule formation

Starting from a bare tetravalent particle, the kinetics is followed as four monovalent particles are assembled onto the tetravalent particle successively. The time intervals between each set of clips are indicated below the videos. Particles were suspended in an aqueous PBS buffer solution (pH=7.4) containing surfactant (1% w/w Pluronic F127). The video was taken at 25˚C, immediately after a rapid quench from 55˚C. The video is acquired at 24 fr/s and played at a rate shown in the upper left corner. Scale bar, 3 μm. (MOV 8191 kb)

Polymerization kinetics of the assembly of complementary divalent particles

A linear polymer chain starts from a divalent particle, which picks up other single divalent particles sequentially. Particles were suspended in an aqueous PBS buffer solution (pH=7.4) containing surfactant (1% w/w Pluronic F127). The video was taken at 25˚C, immediately after a rapid quench from 55˚C. The video is acquired at 10 fr/s and played at a rate indicated in the lower left corner. Scale bar, 2 μm. (MOV 7971 kb)

Kinetics of AB3 colloidal molecule formation

Trivalent particles act as central atoms, picking up monovalent particles one at a time. Most trivalent particles assemble a monovalent particle before the first trivalent particles pick up a second monovalent one. The same is true for the next assembly step. Only after most trivalent particles have acquired two monovalent particles do third particles begin to attach. Particles were suspended in an aqueous PBS buffer solution (pH=7.4) containing surfactant (1% w/w Pluronic F127). The video was taken at 25˚C, immediately after a rapid quench from 55˚C. The video is acquired at 24 fr/s and played at a rate indicated in the lower left corner. Scale bar, 3 μm. (MOV 14804 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Wang, Y., Breed, D. et al. Colloids with valence and specific directional bonding. Nature 491, 51–55 (2012). https://doi.org/10.1038/nature11564

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11564

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing