Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structure of the agonist-bound neurotensin receptor

Abstract

Neurotensin (NTS) is a 13-amino-acid peptide that functions as both a neurotransmitter and a hormone through the activation of the neurotensin receptor NTSR1, a G-protein-coupled receptor (GPCR). In the brain, NTS modulates the activity of dopaminergic systems, opioid-independent analgesia, and the inhibition of food intake; in the gut, NTS regulates a range of digestive processes. Here we present the structure at 2.8 Å resolution of Rattus norvegicus NTSR1 in an active-like state, bound to NTS8–13, the carboxy-terminal portion of NTS responsible for agonist-induced activation of the receptor. The peptide agonist binds to NTSR1 in an extended conformation nearly perpendicular to the membrane plane, with the C terminus oriented towards the receptor core. Our findings provide, to our knowledge, the first insight into the binding mode of a peptide agonist to a GPCR and may support the development of non-peptide ligands that could be useful in the treatment of neurological disorders, cancer and obesity.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Overview of the NTSR1 structure bound to the peptide agonist NTS8–13.
Figure 2: NTSR1-GW5-T4L is in an active-like conformation.
Figure 3: The conserved D/ERY and NPXXY motifs in NTSR1-GW5.
Figure 4: The NTSR1 agonist binding pocket.
Figure 5: A new paradigm for peptide agonist binding.

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Coordinates and structure factors for NTSR1-GW5-T4L are deposited in the Protein Data Bank under accession code 4GRV.

References

  1. Carraway, R. & Leeman, S. E. The isolation of a new hypotensive peptide, neurotensin, from bovine hypothalami. J. Biol. Chem. 248, 6854–6861 (1973)

    CAS  PubMed  Google Scholar 

  2. Bissette, G., Nemeroff, C. B., Loosen, P. T., Prange, A. J., Jr & Lipton, M. A. Hypothermia and intolerance to cold induced by intracisternal administration of the hypothalamic peptide neurotensin. Nature 262, 607–609 (1976)

    ADS  CAS  PubMed  Google Scholar 

  3. Carraway, R. E. & Plona, A. M. Involvement of neurotensin in cancer growth: evidence, mechanisms and development of diagnostic tools. Peptides 27, 2445–2460 (2006)

    CAS  PubMed  Google Scholar 

  4. Griebel, G. & Holsboer, F. Neuropeptide receptor ligands as drugs for psychiatric diseases: the end of the beginning? Nature Rev. Drug Discov. 11, 462–478 (2012)

    CAS  Google Scholar 

  5. Kitabgi, P. Targeting neurotensin receptors with agonists and antagonists for therapeutic purposes. Curr. Opin. Drug Discov. Devel. 5, 764–776 (2002)

    CAS  PubMed  Google Scholar 

  6. Schimpff, R.-M. et al. Increased plasma neurotensin concentrations in patients with Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 70, 784–786 (2001)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Tanaka, K., Masu, M. & Nakanishi, S. Structure and functional expression of the cloned rat neurotensin receptor. Neuron 4, 847–854 (1990)

    CAS  PubMed  Google Scholar 

  8. Chalon, P. et al. Molecular cloning of a levocabastine-sensitive neurotensin binding site. FEBS Lett. 386, 91–94 (1996)

    CAS  PubMed  Google Scholar 

  9. Mazella, J. Sortilin/neurotensin receptor-3: a new tool to investigate neurotensin signaling and cellular trafficking? Cell. Signal. 13, 1–6 (2001)

    CAS  PubMed  Google Scholar 

  10. Barroso, S. et al. Identification of residues involved in neurotensin binding and modeling of the agonist binding site in neurotensin receptor 1. J. Biol. Chem. 275, 328–336 (2000)

    CAS  PubMed  Google Scholar 

  11. Härterich, S., Koschatzky, S., Einsiedel, J. & Gmeiner, P. Novel insights into GPCR-peptide interactions: mutations in extracellular loop 1, ligand backbone methylations and molecular modeling of neurotensin receptor 1. Bioorg. Med. Chem. 16, 9359–9368 (2008)

    PubMed  Google Scholar 

  12. Pang, Y. P., Cusack, B., Groshan, K. & Richelson, E. Proposed ligand binding site of the transmembrane receptor for neurotensin8–13 . J. Biol. Chem. 271, 15060–15068 (1996)

    CAS  PubMed  Google Scholar 

  13. Deupi, X. & Standfuss, J. Structural insights into agonist-induced activation of G-protein-coupled receptors. Curr. Opin. Struct. Biol. 21, 541–551 (2011)

    CAS  PubMed  Google Scholar 

  14. Katritch, V., Cherezov, V. & Stevens, R. C. Diversity and modularity of G protein-coupled receptor structures. Trends Pharmacol. Sci. 33, 17–27 (2012)

    CAS  PubMed  Google Scholar 

  15. Lebon, G., Warne, T. & Tate, C. G. Agonist-bound structures of G protein-coupled receptors. Curr. Opin. Struct. Biol. 22, 1–9 (2012)

    Google Scholar 

  16. Fredriksson, R., Lagerstrom, M. C., Lundin, L. G. & Schioth, H. B. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 63, 1256–1272 (2003)

    CAS  PubMed  Google Scholar 

  17. Granier, S. et al. Structure of the δ-opioid receptor bound to naltrindole. Nature 485, 400–404 (2012)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Manglik, A. et al. Crystal structure of the μ-opioid receptor bound to a morphinan antagonist. Nature 485, 321–326 (2012)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Thompson, A. A. et al. Structure of the nociceptin/orphanin FQ receptor in complex with a peptide mimetic. Nature 485, 395–399 (2012)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu, H. et al. Structure of the human κ-opioid receptor in complex with JDTic. Nature 485, 327–332 (2012)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu, B. et al. Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330, 1066–1071 (2010)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Choe, H. W. et al. Crystal structure of metarhodopsin II. Nature 471, 651–655 (2011)

    ADS  CAS  PubMed  Google Scholar 

  23. Standfuss, J. et al. The structural basis of agonist-induced activation in constitutively active rhodopsin. Nature 471, 656–660 (2011)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lebon, G. et al. Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation. Nature 474, 521–525 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Gether, U. et al. Structural instability of a constitutively active G protein-coupled receptor. Agonist-independent activation due to conformational flexibility. J. Biol. Chem. 272, 2587–2590 (1997)

    CAS  PubMed  Google Scholar 

  26. Tate, C. G. A crystal clear solution for determining GPCR structures. Trends Biochem. Sci. 37, 343–352 (2012)

    CAS  PubMed  Google Scholar 

  27. Shibata, Y. et al. Thermostabilization of the neurotensin receptor NTS1. J. Mol. Biol. 390, 262–277 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Ballesteros, J. A. & Weinstein, H. Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci. 25, 366–428 (1995)

    CAS  Google Scholar 

  29. Rosenbaum, D. M. et al. GPCR engineering yields high-resolution structural insights into β2-adrenergic receptor function. Science 318, 1266–1273 (2007)

    ADS  CAS  PubMed  Google Scholar 

  30. Caffrey, M. & Cherezov, V. Crystallizing membrane proteins using lipidic mesophases. Nature Protocols 4, 706–731 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Warne, T. et al. Structure of a β1-adrenergic G-protein-coupled receptor. Nature 454, 486–491 (2008)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rasmussen, S. G. et al. Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature 477, 549–555 (2011)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rasmussen, S. G. et al. Structure of a nanobody-stabilized active state of the β2 adrenoceptor. Nature 469, 175–180 (2011)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Barroso, S., Richard, F., Nicolas-Etheve, D., Kitabgi, P. & Labbe-Jullie, C. Constitutive activation of the neurotensin receptor 1 by mutation of Phe358 in helix seven. Br. J. Pharmacol. 135, 997–1002 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Goncalves, J. A. et al. Highly conserved tyrosine stabilizes the active state of rhodopsin. Proc. Natl Acad. Sci. USA 107, 19861–19866 (2010)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vogel, R. et al. Functional role of the “ionic lock”—an interhelical hydrogen-bond network in family A heptahelical receptors. J. Mol. Biol. 380, 648–655 (2008)

    CAS  PubMed  Google Scholar 

  37. Vita, N. et al. Cloning and expression of a complementary DNA encoding a high affinity human neurotensin receptor. FEBS Lett. 317, 139–142 (1993)

    CAS  PubMed  Google Scholar 

  38. Scheerer, P. et al. Crystal structure of opsin in its G-protein-interacting conformation. Nature 455, 497–502 (2008)

    ADS  CAS  PubMed  Google Scholar 

  39. Li, J., Edwards, P. C., Burghammer, M., Villa, C. & Schertler, G. F. Structure of bovine rhodopsin in a trigonal crystal form. J. Mol. Biol. 343, 1409–1438 (2004)

    CAS  PubMed  Google Scholar 

  40. Cherezov, V. et al. High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science 318, 1258–1265 (2007)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Henry, J. A., Horwell, D. C., Meecham, K. G. & Rees, D. C. A structure-affinity study of the amino acid side-chains in neurotensin: N and C terminal deletions and Ala-scan. Bioorg. Med. Chem. Lett. 3, 949–952 (1993)

    CAS  Google Scholar 

  42. Luca, S. et al. The conformation of neurotensin bound to its G protein-coupled receptor. Proc. Natl Acad. Sci. USA 100, 10706–10711 (2003)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Warne, T. et al. The structural basis for agonist and partial agonist action on a β1-adrenergic receptor. Nature 469, 241–244 (2011)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chae, P. S. et al. Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins. Nature Methods 7, 1003–1008 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kobilka, B. K. Amino and carboxyl terminal modifications to facilitate the production and purification of a G protein-coupled receptor. Anal. Biochem. 231, 269–271 (1995)

    CAS  PubMed  Google Scholar 

  46. Hellmich, M. R., Battey, J. F. & Northup, J. K. Selective reconstitution of gastrin-releasing peptide receptor with G alpha q. Proc. Natl Acad. Sci. USA 94, 751–756 (1997)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shibata, Y. et al. Thermostabilization of the neurotensin receptor NTS1. J. Mol. Biol. 390, 262–277 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hartman, J. L. & Northup, J. K. Functional reconstitution in situ of 5-hydroxytryptamine 2c (5HT2c) receptors with αq and inverse agonism of 5HT2c receptor antagonists. J. Biol. Chem. 271, 22591–22597 (1996)

    CAS  PubMed  Google Scholar 

  49. Jian, X. et al. The bombesin receptor subtypes have distinct G protein specificities. J. Biol. Chem. 274, 11573–11581 (1999)

    CAS  PubMed  Google Scholar 

  50. Gully, D. et al. Biochemical and pharmacological profile of a potent and selective nonpeptide antagonist of the neurotensin receptor. Proc. Natl Acad. Sci. USA 90, 65–69 (1993)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  51. Inagaki, S. et al. Modulation of the interaction between neurotensin receptor NTS1 and Gq protein by lipid. J. Mol. Biol. 417, 95–111 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Caffrey, M. & Cherezov, V. Crystallizing membrane proteins using lipidic mesophases. Nature Protocols 4, 706–731 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Landau, E. M. & Rosenbusch, J. P. Lipidic cubic phases: A novel concept for the crystallization of membrane proteins. Proc. Natl Acad. Sci. USA 93, 14532–14535 (1996)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cherezov, V. et al. Rastering strategy for screening and centring of microcrystal samples of human membrane proteins with a sub-10 μm size X-ray synchrotron beam. J. R. Soc. Interface 6 (Suppl. 5). S587–S597 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Hilgart, M. C. et al. Automated sample-scanning methods for radiation damage mitigation and diffraction-based centering of macromolecular crystals. J. Synchrotron Radiat. 18, 717–722 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Adams, P. D. et al. PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Wacker, D. et al. Conserved binding mode of human β2 adrenergic receptor inverse agonists and antagonist revealed by X-ray crystallography. J. Am. Chem. Soc. 132, 11443–11445 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Burmeister, W. P. Structural changes in a cryo-cooled protein crystal owing to radiation damage. Acta Crystallogr. D 56, 328–341 (2000)

    CAS  PubMed  Google Scholar 

  60. Weik, M. et al. Specific chemical and structural damage to proteins produced by synchrotron radiation. Proc. Natl Acad. Sci. USA 97, 623–628 (2000)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  61. Paithankar, K. S., Owen, R. L. & Garman, E. F. Absorbed dose calculations for macromolecular crystals: improvements to RADDOSE. J. Synchrotron Radiat. 16, 152–162 (2009)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Intramural Research Program of the National Institutes of Health (J.F.W., J.G.-J., P.S. and R.G.: National Institute of Neurological Disorders and Stroke; N.N. and J.S.: National Institute of Diabetes and Digestive and Kidney Diseases) and a joint grant from Pfizer Global Research and Development and the MRCT Development Gap Fund in addition to core funding from the UK Medical Research Council MRC U105197215 (Y.S., C.G.T.). The Protein Production Facility of the New York Consortium on Membrane Protein Structure was supported by the National Institutes of Health grant U54GM075026 (J.L., B.K.). We acknowledge the NIH Roadmap grant P50 GM073197 for technology development (to R. C. Stevens) for visitor support at The Scripps Research Institute. We thank the staff at the General Medicine and Cancer Institute’s Collaborative Access Team (GM/CA-CAT) beamline at the Advanced Photon Source, Argonne National Laboratory for their assistance during data collection. Use of the Advanced Photon Source was supported by the US Department of Energy, Basic Energy Sciences, Office of Science, under contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Contributions

J.F.W. characterized various NTSR1 constructs by ligand binding and G protein assays, tested NTSR1 mutants for stability, and purified NTSR1 for crystallization. N.N. collected diffraction data and solved the structure. Y.S. performed alanine scanning mutagenesis and tested NTSR1 mutants for stability, and C.G.T. was responsible for the mutagenesis strategy. J.L. and B.K. explored and performed the automation of alanine scanning mutagenesis. F.X. performed crystallization experiments and stability tests. J.G.-J. and P.S. did alanine scanning and molecular biology on NTSR1. J.S. performed large-scale fermentation. R.G. performed crystallization experiments, assisted with data collection and was responsible for the overall project strategy. The manuscript was written by R.G. and C.G.T.

Corresponding author

Correspondence to Reinhard Grisshammer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains a Supplementary Discussion, Supplementary Abbreviations and Acknowledgements, Supplementary Tables 1-5, Supplementary Figures 1-14 and Supplementary References. (PDF 13600 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

White, J., Noinaj, N., Shibata, Y. et al. Structure of the agonist-bound neurotensin receptor. Nature 490, 508–513 (2012). https://doi.org/10.1038/nature11558

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11558

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing