Reciprocal interactions of the intestinal microbiota and immune system

Abstract

The emergence of the adaptive immune system in vertebrates set the stage for evolution of an advanced symbiotic relationship with the intestinal microbiota. The defining features of specificity and memory that characterize adaptive immunity have afforded vertebrates the mechanisms for efficiently tailoring immune responses to diverse types of microbes, whether to promote mutualism or host defence. These same attributes can put the host at risk of immune-mediated diseases that are increasingly linked to the intestinal microbiota. Understanding how the adaptive immune system copes with the remarkable number and diversity of microbes that colonize the digestive tract, and how the system integrates with more primitive innate immune mechanisms to maintain immune homeostasis, holds considerable promise for new approaches to modulate immune networks to treat and prevent disease.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The gut-associated lymphoid tissue establishes perinatal host-microbiota mutualism in the intestine.
Figure 2: The barrier function of the intestinal epithelium.
Figure 3: The epithelial-innate-adaptive continuum in response to microbial antigens.

References

  1. 1

    Ley, R. E., Peterson, D. A. & Gordon, J. I. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124, 837–848 (2006).

    CAS  PubMed  Google Scholar 

  2. 2

    Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

    CAS  Article  Google Scholar 

  3. 3

    McFall-Ngai, M. Adaptive immunity: care for the community. Nature 445, 153 (2007).

    ADS  CAS  PubMed  Google Scholar 

  4. 4

    Weaver, C. T. & Hatton, R. D. Interplay between the TH17 and TReg cell lineages: a (co-)evolutionary perspective. Nature Rev. Immunol. 9, 883–889 (2009).

    CAS  Google Scholar 

  5. 5

    Zhang, Y.-A. et al. IgT, a primitive immunoglobulin class specialized in mucosal immunity. Nature Immunol. 11, 827–835 (2010).

    CAS  Google Scholar 

  6. 6

    Dominguez-Bello, M. G. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl Acad. Sci. USA 107, 11971–11975 (2010).

    ADS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Bager, P., Wohlfahrt, J. & Westergaard, T. Caesarean delivery and risk of atopy and allergic disease: meta-analyses. Clin. Exp. Allergy 38, 634–642 (2008).

    CAS  PubMed  Google Scholar 

  8. 8

    Palmer, C., Bik, E., Digiulio, D., Relman, D. & Brown, P. Development of the human infant intestinal microbiota. PLoS Biol. 5, e177 (2007).

    PubMed  PubMed Central  Google Scholar 

  9. 9

    Cherrier, M. & Eberl, G. The development of LTi cells. Curr. Opin. Immunol. 24, 178–183 (2012).

    CAS  PubMed  Google Scholar 

  10. 10

    van de Pavert, S. A. & Mebius, R. E. New insights into the development of lymphoid tissues. Nature Rev. Immunol. 10, 664–674 (2010).

    CAS  Google Scholar 

  11. 11

    Kanamori, Y. et al. Identification of novel lymphoid tissues in murine intestinal mucosa where clusters of c-kit+IL-7R+Thy1+ lympho-hemopoietic progenitors develop. J. Exp. Med. 184, 1449–1459 (1996).

    CAS  PubMed  Google Scholar 

  12. 12

    Bouskra, D. et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 456, 507–510 (2008).

    ADS  CAS  PubMed  Google Scholar 

  13. 13

    Tsuji, M. et al. Requirement for lymphoid tissue-inducer cells in isolated follicle formation and T cell-independent immunoglobulin A generation in the gut. Immunity 29, 261–271 (2008).

    CAS  PubMed  Google Scholar 

  14. 14

    Lane, P. J. L. et al. Lymphoid tissue inducer cells: bridges between the ancient innate and the modern adaptive immune systems. Mucosal Immunol. 2, 472–477 (2009).

    CAS  PubMed  Google Scholar 

  15. 15

    Lotz, M. et al. Postnatal acquisition of endotoxin tolerance in intestinal epithelial cells. J. Exp. Med. 203, 973–984 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Ismail, A. S. et al. γδ intraepithelial lymphocytes are essential mediators of host–microbial homeostasis at the intestinal mucosal surface. Proc. Natl Acad. Sci. USA 108, 8743–8748 (2011).

    ADS  CAS  PubMed  Google Scholar 

  17. 17

    Hansen, C. H. et al. Patterns of early gut colonization shape future immune responses of the host. PLoS ONE 7, e34043 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Olszak, T. et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336, 489–493 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Petersson, J. et al. Importance and regulation of the colonic mucus barrier in a mouse model of colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 300, G327–G333 (2011).

    CAS  PubMed  Google Scholar 

  20. 20

    Bergstrom, K. S. B. et al. Muc2 protects against lethal infectious colitis by disassociating pathogenic and commensal bacteria from the colonic mucosa. PLoS Pathogens 6, e1000902 (2010).

    PubMed  PubMed Central  Google Scholar 

  21. 21

    Van der Sluis, M. et al. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 131, 117–129 (2006).

    CAS  Google Scholar 

  22. 22

    Johansson, M. E. V., Larsson, J. M. H. & Hansson, G. C. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host–microbial interactions. Proc. Natl Acad. Sci. USA 108, 4659–4665 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Fukuda, S. et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469, 543–547 (2011).This article reports comparative genomic and metabolic profiling of protective compared with non-protective strains of Bifidobacterium to identify a class of bacterial carbohydrate transporters that impart host-protective effects through the generation of acetate.

    ADS  CAS  PubMed  Google Scholar 

  24. 24

    Maslowski, K. M. et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461, 1282–1286 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Vaishnava, S. et al. The antibacterial lectin Reg-IIIγ promotes the spatial segregation of microbiota and host in the intestine. Science 334, 255–258 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Cash, H. L., Whitham, C. V., Behrendt, C. L. & Hooper, L. V. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313, 1126–1130 (2006). This study demonstrated that Reg-IIIγ, a C-type lectin produced by Paneth cells in response to the resident microbiota, has microbicidal activity, identifying a new mechanism for sequestration of constituents of the microbiota to the intestinal lumen.

    ADS  CAS  Article  Google Scholar 

  27. 27

    Salzman, N. H. et al. Enteric defensins are essential regulators of intestinal microbial ecology. Nature Immunol. 11, 76–83 (2010).

    CAS  Google Scholar 

  28. 28

    Hugot, J. P. et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411, 599–603 (2001).

    ADS  CAS  Google Scholar 

  29. 29

    Ogura, Y. et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 411, 603–606 (2001). References 28 and 29 identified the first major susceptibility gene for IBD. These studies also implicated a link between impaired innate immune recognition of the microbiota and dysregulated adaptive immunity in IBD pathogenesis.

    ADS  CAS  PubMed  Google Scholar 

  30. 30

    Elinav, E. et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145, 745–757 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. & Medzhitov, R. Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis. Cell 118, 229–241 (2004). This report established that TLR signalling in response to the resident microbiota has an important role in promoting maintenance of epithelial barrier function.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Vijay-Kumar, M., Aitken, J. D. & Gewirtz, A. T. Toll like receptor-5: protecting the gut from enteric microbes. Semin. Immunopathol. 30, 11–21 (2008).

    CAS  PubMed  Google Scholar 

  33. 33

    Lodes, M. J. et al. Bacterial flagellin is a dominant antigen in Crohn disease. J. Clin. Invest. 113, 1296–1306 (2004). This study reports an expression library that was made from the microbiota of spontaneously colitic mice and was screened with antibodies in their serum to identify commensal bacterial flagellins as major antigenic targets of the immune response in IBD.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Neish, A. S. et al. Prokaryotic regulation of epithelial responses by inhibition of IκB-α ubiquitination. Science 289, 1560–1563 (2000).

    ADS  CAS  PubMed  Google Scholar 

  35. 35

    Kelly, D. et al. Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear–cytoplasmic shuttling of PPAR-γ and RelA. Nature Immunol. 5, 104–112 (2004).

    CAS  Google Scholar 

  36. 36

    Hill, D. A. & Artis, D. Intestinal bacteria and the regulation of immune cell homeostasis. Annu. Rev. Immunol. 28, 623–667 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Rescigno, M. & Di Sabatino, A. Dendritic cells in intestinal homeostasis and disease. J. Clin. Invest. 119, 2441–2450 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    He, B. et al. Intestinal bacteria trigger T cell-independent immunoglobulin A2 class switching by inducing epithelial-cell secretion of the cytokine APRIL. Immunity 26, 812–826 (2007).

    CAS  PubMed  Google Scholar 

  39. 39

    Smythies, L. E. et al. Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity. J. Clin. Invest. 115, 66–75 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Franchi, L. et al. NLRC4-driven production of IL-1β discriminates between pathogenic and commensal bacteria and promotes host intestinal defense. Nature Immunol. 13, 449–456 (2012).

    CAS  Google Scholar 

  41. 41

    Colonna, M. Interleukin-22-producing natural killer cells and lymphoid tissue inducer-like cells in mucosal immunity. Immunity 31, 15–23 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Spits, H. & Di Santo, J. P. The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nature Immunol. 12, 21–27 (2011).

    CAS  Google Scholar 

  43. 43

    Sonnenberg, G. F., Monticelli, L. A., Elloso, M. M., Fouser, L. A. & Artis, D. CD4+ lymphoid tissue-inducer cells promote innate immunity in the gut. Immunity 34, 122–134 (2011).

    CAS  Google Scholar 

  44. 44

    Cella, M. et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 457, 722–725 (2009).

    ADS  CAS  Google Scholar 

  45. 45

    Takatori, H. et al. Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22. J. Exp. Med. 206, 35–41 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Buonocore, S. et al. Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature 464, 1371–1375 (2010).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Sonnenberg, G. F., Fouser, L. A. & Artis, D. Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22. Nature Immunol. 12, 383–390 (2011).

    CAS  Google Scholar 

  48. 48

    Qiu, J. et al. The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. Immunity 36, 92–104 (2012).

    CAS  PubMed  Google Scholar 

  49. 49

    Ota, N. et al. IL-22 bridges the lymphotoxin pathway with the maintenance of colonic lymphoid structures during infection with Citrobacter rodentium . Nature Immunol. 12, 941–948 (2011).

    CAS  Google Scholar 

  50. 50

    Tumanov, A. V. et al. Lymphotoxin controls the IL-22 protection pathway in gut innate lymphoid cells during mucosal pathogen challenge. Cell Host Microbe 10, 44–53 (2011).

    MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Garrett, W. S. et al. Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. Cell Host Microbe 8, 292–300 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Maynard, C. L. et al. Regulatory T cells expressing interleukin 10 develop from Foxp3+ and Foxp3 precursor cells in the absence of interleukin 10. Nature Immunol. 8, 931–941 (2007).

    CAS  Google Scholar 

  53. 53

    Josefowicz, S. Z. et al. Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature 482, 395–399 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Izcue, A., Coombes, J. L. & Powrie, F. Regulatory lymphocytes and intestinal inflammation. Annu. Rev. Immunol. 27, 313–338 (2009).

    CAS  PubMed  Google Scholar 

  55. 55

    Lathrop, S. K. et al. Peripheral education of the immune system by colonic commensal microbiota. Nature 478, 250–254 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Kühn, R., Löhler, J., Rennick, D., Rajewsky, K. & Müller, W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75, 263–274 (1993). This study identified a non-redundant function for IL-10 in immune homeostasis in the intestine, and observed the importance of composition of the microbiota in modulating disease severity in genetically susceptible mice.

    Google Scholar 

  57. 57

    Yen, D. et al. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J. Clin. Invest. 116, 1310–1316 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Sellon, R. K. et al. Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect. Immun. 66, 5224–5231 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Rakoff-Nahoum, S., Hao, L. & Medzhitov, R. Role of Toll-like receptors in spontaneous commensal-dependent colitis. Immunity 25, 319–329 (2006).

    CAS  PubMed  Google Scholar 

  60. 60

    Roers, A. et al. T cell-specific inactivation of the interleukin 10 gene in mice results in enhanced T cell responses but normal innate responses to lipopolysaccharide or skin irritation. J. Exp. Med. 200, 1289–1297 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Takeda, K. et al. Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity 10, 39–49 (1999).

    CAS  PubMed  Google Scholar 

  62. 62

    Chaudhry, A. et al. Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation. Immunity 34, 566–578 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Huber, S. et al. Th17 cells express interleukin-10 receptor and are controlled by Foxp3 and Foxp3+ regulatory CD4+ T cells in an interleukin-10-dependent manner. Immunity 34, 554–565 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Franke, A. et al. Sequence variants in IL10, ARPC2 and multiple other loci contribute to ulcerative colitis susceptibility. Nature Genet. 40, 1319–1323 (2008).

    CAS  PubMed  Google Scholar 

  65. 65

    Glocker, E.-O. et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N. Engl. J. Med. 361, 2033–2045 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Round, J. L. et al. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 332, 974–977 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Wang, Q. et al. A bacterial carbohydrate links innate and adaptive responses through Toll-like receptor 2. J. Exp. Med. 203, 2853–2863 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Atarashi, K. et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331, 337–341 (2011).

    ADS  CAS  Google Scholar 

  69. 69

    Geuking, M. B. et al. Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity 34, 794–806 (2011).

    CAS  Google Scholar 

  70. 70

    Sawa, S. et al. RORγt+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nature Immunol. 12, 320–326 (2011).

    CAS  Google Scholar 

  71. 71

    Lee, Y. K. et al. Late developmental plasticity in the T helper 17 lineage. Immunity 30, 92–107 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    Ivanov, I. I. et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 4, 337–349 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Shaw, M. H., Kamada, N., Kim, Y.-G. & Núñez, G. Microbiota-induced IL-1β, but not IL-6, is critical for the development of steady-state TH17 cells in the intestine. J. Exp. Med. 209, 251–258 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Zaph, C. et al. Commensal-dependent expression of IL-25 regulates the IL-23–IL-17 axis in the intestine. J. Exp. Med. 205, 2191–2198 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Atarashi, K. et al. ATP drives lamina propria TH17 cell differentiation. Nature 455, 808–812 (2008).

    ADS  CAS  Google Scholar 

  76. 76

    Gaboriau-Routhiau, V. et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31, 677–689 (2009).

    CAS  PubMed  Google Scholar 

  77. 77

    Talham, G. L., Jiang, H. Q., Bos, N. A. & Cebra, J. J. Segmented filamentous bacteria are potent stimuli of a physiologically normal state of the murine gut mucosal immune system. Infect. Immun. 67, 1992–2000 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Wu, H.-J. et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32, 815–827 (2010). This study reported that a single component of the microbiota that induces increased intestinal T H 17 cells could drive the development of extraintestinal immune-mediated disease in genetically susceptible mice. This raises the possibility that antigen-independent effects of the mucosal immune response to limited constituents of the microbiota may trigger systemic autoimmunity.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    Lee, Y. K., Menezes, J. S., Umesaki, Y. & Mazmanian, S. K. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA 108, 4615–4622 (2011).

    ADS  CAS  Google Scholar 

  81. 81

    Annunziato, F. et al. Phenotypic and functional features of human Th17 cells. J. Exp. Med. 204, 1849–1861 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Coombes, J. L. et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β and retinoic acid-dependent mechanism. J. Exp. Med. 204, 1757–1764 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    Sun, C. M. et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med. 204, 1775–1785 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84

    Mucida, D. et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317, 256–260 (2007).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Maynard, C. L. et al. Contrasting roles for all-trans retinoic acid in TGF-β-mediated induction of Foxp3 and Il10 genes in developing regulatory T cells. J. Exp. Med. 206, 343–357 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86

    Hall, J. et al. Commensal DNA limits regulatory T cell conversion and is a natural adjuvant of intestinal immune responses. Immunity 29, 637–649 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87

    DePaolo, R. W. et al. Co-adjuvant effects of retinoic acid and IL-15 induce inflammatory immunity to dietary antigens. Nature 471, 220–224 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Lee, Y. K., Mukasa, R., Hatton, R. D. & Weaver, C. T. Developmental plasticity of Th17 and Treg cells. Curr. Opin. Immunol. 21, 274–280 (2009).

    CAS  PubMed  Google Scholar 

  89. 89

    Wohlfert, E. & Belkaid, Y. Plasticity of Treg at infected sites. Mucosal Immunol. 3, 213–215 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90

    Tsuji, M. et al. Preferential generation of follicular B helper T cells from Foxp3+ T cells in gut Peyer's patches. Science 323, 1488–1492 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    Cong, Y., Feng, T., Fujihashi, K., Schoeb, T. R. & Elson, C. O. A dominant, coordinated T regulatory cell–IgA response to the intestinal microbiota. Proc. Natl Acad. Sci. USA 106, 19256–19261 (2009). References 90 and 91 identify a central role for T reg cells in the induction and maintenance of IgA-producing plasma cells in the intestines, extending the functionality of T reg cells in supporting mutualism to the microbiota.

    ADS  CAS  Google Scholar 

  92. 92

    Macpherson, A. J. & Uhr, T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303, 1662–1665 (2004).

    ADS  CAS  PubMed  Google Scholar 

  93. 93

    Lupp, C. et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe 2, 119–129 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94

    Targan, S. R. et al. Antibodies to CBir1 flagellin define a unique response that is associated independently with complicated Crohn's disease. Gastroenterology 128, 2020–2028 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95

    Khor, B., Gardet, A. & Xavier, R. J. Genetics and pathogenesis of inflammatory bowel disease. Nature 474, 307–317 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96

    Kastelein, R. A., Hunter, C. A. & Cua, D. J. Discovery and biology of IL-23 and IL-27: related but functionally distinct regulators of inflammation. Annu. Rev. Immunol. 25, 221–242 (2007).

    CAS  PubMed  Google Scholar 

  97. 97

    Wacklin, P. et al. Secretor genotype (FUT2 gene) is strongly associated with the composition of bifidobacteria in the human intestine. PLoS ONE 6, e20113 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  98. 98

    Morrow, A. L. et al. Fucosyltransferase 2 non-secretor and low secretor status predicts severe outcomes in premature infants. J. Pediatr. 158, 745–751 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99

    McGovern, D. P. B. et al. Fucosyltransferase 2 (FUT2) non-secretor status is associated with Crohn's disease. Hum. Mol. Genet. 19, 3468–3476 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100

    Rydell, G. E., Kindberg, E., Larson, G. & Svensson, L. Susceptibility to winter vomiting disease: a sweet matter. Rev. Med. Virol. 21, 370–382 (2011).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank D. Randolph and C. Morrow for discussions and critical review of this manuscript. C.T.W., C.O.E. and R.D.H. are supported by grants from the National Institutes of Health, and C.T.W. and C.L.M. are supported by grants from the Crohn's and Colitis Foundation of America. The authors extend their apologies to colleagues whose work could not be adequately acknowledged owing to space limitations.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Casey T. Weaver.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Maynard, C., Elson, C., Hatton, R. et al. Reciprocal interactions of the intestinal microbiota and immune system. Nature 489, 231–241 (2012). https://doi.org/10.1038/nature11551

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.