Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A bimodular mechanism of calcium control in eukaryotes

Abstract

Calcium ions (Ca2+) have an important role as secondary messengers in numerous signal transduction processes1,2,3,4, and cells invest much energy in controlling and maintaining a steep gradient between intracellular (0.1-micromolar) and extracellular (2-millimolar) Ca2+ concentrations1. Calmodulin-stimulated calcium pumps, which include the plasma-membrane Ca2+-ATPases (PMCAs), are key regulators of intracellular Ca2+ in eukaryotes5,6,7,8. They contain a unique amino- or carboxy-terminal regulatory domain responsible for autoinhibition, and binding of calcium-loaded calmodulin to this domain releases autoinhibition and activates the pump. However, the structural basis for the activation mechanism is unknown and a key remaining question is how calmodulin-mediated PMCA regulation can cover both basal Ca2+ levels in the nanomolar range as well as micromolar-range Ca2+ transients generated by cell stimulation7. Here we present an integrated study combining the determination of the high-resolution crystal structure of a PMCA regulatory-domain/calmodulin complex with in vivo characterization and biochemical, biophysical and bioinformatics data that provide mechanistic insights into a two-step PMCA activation mechanism mediated by calcium-loaded calmodulin. The structure shows the entire PMCA regulatory domain and reveals an unexpected 2:1 stoichiometry with two calcium-loaded calmodulin molecules binding to different sites on a long helix. A multifaceted characterization of the role of both sites leads to a general structural model for calmodulin-mediated regulation of PMCAs that allows stringent, highly responsive control of intracellular calcium in eukaryotes, making it possible to maintain a stable, basal level at a threshold Ca2+ concentration, where steep activation occurs.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall structure of the A. thaliana (Cam7) 2–Aca8R complex.
Figure 2: Physiological and biochemical characterization of wild-type Aca8 and mutants.
Figure 3: Binding of CaM to the putative second CaM-binding site of PMCA splice variants.
Figure 4: Schematic of the proposed two-step, Ca 2+-mediated CaM-activation mechanism.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Atomic coordinates and structure factors for the crystal structure of (Cam7)2–Aca8R have been deposited with the Protein Data Bank under accession code 4AQR.

References

  1. Clapham, D. E. Calcium signaling. Cell 131, 1047–1058 (2007)

    CAS  PubMed  Google Scholar 

  2. Carafoli, E. Calcium signaling: a tale for all seasons. Proc. Natl Acad. Sci. USA 99, 1115–1122 (2002)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ghosh, A. & Greenberg, M. E. Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science 268, 239–247 (1995)

    ADS  CAS  PubMed  Google Scholar 

  4. Berridge, M. J. Inositol trisphosphate and calcium signalling. Nature 361, 315–325 (1993)

    ADS  CAS  PubMed  Google Scholar 

  5. Strehler, E. E., Filoteo, A. G., Penniston, J. T. & Caride, A. J. Plasma-membrane Ca(2+) pumps: structural diversity as the basis for functional versatility. Biochem. Soc. Trans. 35, 919–922 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Brini, M. & Carafoli, E. Calcium pumps in health and disease. Physiol. Rev. 89, 1341–1378 (2009)

    CAS  PubMed  Google Scholar 

  7. Brini, M. & Carafoli, E. The plasma membrane Ca2+ ATPase and the plasma membrane sodium calcium exchanger cooperate in the regulation of cell calcium. Cold Spring Harb. Perspect. Biol. 3, 1–15 (2011)

    Google Scholar 

  8. Axelsen, K. B. & Palmgren, M. G. Evolution of substrate specificities in the P-type ATPase superfamily. J. Mol. Evol. 46, 84–101 (1998)

    ADS  CAS  PubMed  Google Scholar 

  9. Malmström, S., Askerlund, P. & Palmgren, M. G. A calmodulin-stimulated Ca2+-ATPase from plant vacuolar membranes with a putative regulatory domain at its N-terminus. FEBS Lett. 400, 324–328 (1997)

    PubMed  Google Scholar 

  10. Falchetto, R., Vorherr, T., Brunner, J. & Carafoli, E. The plasma membrane Ca2+ pump contains a site that interacts with its calmodulin-binding domain. J. Biol. Chem. 266, 2930–2936 (1991)

    CAS  PubMed  Google Scholar 

  11. Falchetto, R., Vorherr, T. & Carafoli, E. The calmodulin-binding site of the plasma membrane Ca2+ pump interacts with the transduction domain of the enzyme. Protein Sci. 1, 1613–1621 (1992)

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Bonza, M. C. & Luoni, L. Plant and animal type 2B Ca2+-ATPases: evidence for a common auto-inhibitory mechanism. FEBS Lett. 584, 4783–4788 (2010)

    CAS  PubMed  Google Scholar 

  13. Carafoli, E. Biogenesis: plasma membrane calcium ATPase: 15 years of work on the purified enzyme. FASEB J. 8, 993–1002 (1994)

    CAS  PubMed  Google Scholar 

  14. Penniston, J. T. & Enyedi, A. Modulation of the plasma membrane Ca2+ pump. J. Membr. Biol. 165, 101–109 (1998)

    CAS  PubMed  Google Scholar 

  15. Baekgaard, L., Luoni, L., De Michelis, M. I. & Palmgren, M. G. The plant plasma membrane Ca2+ pump ACA8 contains overlapping as well as physically separated autoinhibitory and calmodulin-binding domains. J. Biol. Chem. 281, 1058–1065 (2006)

    CAS  PubMed  Google Scholar 

  16. Hoeflich, K. P. & Ikura, M. Calmodulin in action: diversity in target recognition and activation mechanisms. Cell 108, 739–742 (2002)

    CAS  PubMed  Google Scholar 

  17. Juranic, N. et al. Calmodulin wraps around its binding domain in the plasma membrane Ca2+ pump anchored by a novel 18–1 motif. J. Biol. Chem. 285, 4015–4024 (2010)

    CAS  PubMed  Google Scholar 

  18. Ishida, H. & Vogel, H. J. The solution structure of a plant calmodulin and the CaM-binding domain of the vacuolar calcium-ATPase BCA1 reveals a new binding and activation mechanism. J. Biol. Chem. 285, 38502–38510 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Cunningham, K. W. & Fink, G. R. Calcineurin-dependent growth control in Saccharomyces cerevisiae mutants lacking PMC1, a homolog of plasma membrane Ca2+ ATPases. J. Cell Biol. 124, 351–363 (1994)

    CAS  PubMed  Google Scholar 

  20. Durr, G. et al. The medial-Golgi ion pump Pmr1 supplies the yeast secretory pathway with Ca2+ and Mn2+ required for glycosylation, sorting, and endoplasmic reticulum-associated protein degradation. Mol. Biol. Cell 9, 1149–1162 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Strehler, E. E. & Zacharias, D. A. Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps. Physiol. Rev. 81, 21–50 (2001)

    CAS  PubMed  Google Scholar 

  22. Enyedi, A. et al. The Ca2+ affinity of the plasma membrane Ca2+ pump is controlled by alternative splicing. J. Biol. Chem. 269, 41–43 (1994)

    CAS  PubMed  Google Scholar 

  23. Namba, T. et al. Alternative splicing of C-terminal tail of prostaglandin E receptor subtype EP3 determines G-protein specificity. Nature 365, 166–170 (1993)

    ADS  CAS  PubMed  Google Scholar 

  24. Spengler, D. et al. Differential signal transduction by five splice variants of the PACAP receptor. Nature 365, 170–175 (1993)

    ADS  CAS  PubMed  Google Scholar 

  25. Fusca, T. et al. Single point mutations in the small cytoplasmic loop of ACA8, a plasma membrane Ca2+-ATPase of Arabidopsis thaliana, generate partially deregulated pumps. J. Biol. Chem. 284, 30881–30888 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Meneghelli, S., Fusca, T., Luoni, L. & De Michelis, M. I. Dual mechanism of activation of plant plasma membrane Ca2+-ATPase by acidic phospholipids: Evidence for a phospholipid binding site which overlaps with the calmodulin-binding site. Mol. Membr. Biol. 25, 539–546 (2008)

    CAS  PubMed  Google Scholar 

  27. Tidow, H., Hein, K. L., Baekgaard, L., Palmgren, M. G. & Nissen, P. Expression, purification, crystallization and preliminary X-ray analysis of calmodulin in complex with the regulatory domain of the plasma-membrane Ca2+-ATPase ACA8. Acta Crystallogr. F 66, 361–363 (2010)

    CAS  Google Scholar 

  28. Schiott, M. et al. A plant plasma membrane Ca2+ pump is required for normal pollen tube growth and fertilization. Proc. Natl Acad. Sci. USA 101, 9502–9507 (2004)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Miroux, B. & Walker, J. E. Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J. Mol. Biol. 260, 289–298 (1996)

    CAS  PubMed  Google Scholar 

  30. Grynkiewicz, G., Poenie, M. & Tsien, R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260, 3440–3450 (1985)

    CAS  PubMed  Google Scholar 

  31. Kabsch, W. XDS. Acta Crystallogr. D 66, 125–132 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  32. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Afonine, P. V., Grosse-Kunstleve, R. W. & Adams, P. D. The Phenix refinement framework. CCP4 Newsletter 42, 8 (2005)

    Google Scholar 

  35. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010)

    CAS  PubMed  Google Scholar 

  36. Davis, I. W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007)

    ADS  PubMed  PubMed Central  Google Scholar 

  37. DeLano, W. L. The PyMOL Molecular Graphics System. http://www.pymol.org (2002)

  38. Konarev, P. V., Petoukhov, M. V., Volkov, V. V. & Svergun, D. I. ATSAS 2.1, a program package for small-angle scattering data analysis. J. Appl. Crystallogr. 39, 277–286 (2006)

    CAS  Google Scholar 

  39. Konarev, P. V., Volkov, V. V., Sokolova, A. V., Koch, M. H. J. & Svergun, D. I. PRIMUS: a Windows PC-based system for small-angle scattering data analysis. J. Appl. Crystallogr. 36, 1277–1282 (2003)

    CAS  Google Scholar 

  40. Svergun, D. I. Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J. Appl. Crystallogr. 25, 495–503 (1992)

    CAS  Google Scholar 

  41. Svergun, D. I. Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys. J. 76, 2879–2886 (1999)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kozin, M. B. & Svergun, D. I. Automated matching of high- and low-resolution structural models. J. Appl. Crystallogr. 34, 33–41 (2001)

    CAS  Google Scholar 

  43. Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994)

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Crooks, G. E., Hon, G., Chandonia, J. M. & Brenner, S. E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004)

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Šali, A. & Blundell, T. L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815 (1993)

    PubMed  Google Scholar 

  46. Glaser, F. et al. ConSurf: identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics 19, 163–164 (2003)

    CAS  PubMed  Google Scholar 

  47. Dominguez, C., Boelens, R. & Bonvin, A. M. HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J. Am. Chem. Soc. 125, 1731–1737 (2003)

    CAS  PubMed  Google Scholar 

  48. de Vries, S. J. et al. HADDOCK versus HADDOCK: new features and performance of HADDOCK2.0 on the CAPRI targets. Proteins 69, 726–733 (2007)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Nissen and Palmgren labs for discussions, and P. Gourdon for help with data collection. We thank the staff at beamlines ID23-2 at the European Radiation Synchrotron Facility, France; PX3 at the Swiss Light Source, Paul Scherrer Institute, Switzerland; and X33 at EMBL/DESY, Germany. We are grateful to K. Nagai for a plasmid expressing mammalian CaM. Support from the European Community-Research Infrastructure Action under the FP7 is acknowledged for access to EMBL/DESY. H.T. is a Junior Research Fellow at Trinity College, Cambridge, and was supported by an EMBO Long-Term Fellowship, a Marie-Curie Intra-European Fellowship and an HFSP Long-Term Fellowship. P.N. was supported by an ERC advanced grant (BIOMEMOS).

Author information

Authors and Affiliations

Authors

Contributions

H.T. designed and initiated the project, designed the expression constructs and developed the co-expression strategy, initially assisted by K.L.H. Protein purification, crystallization, structure determination and refinement, and the overall analysis of the results, was performed by H.T. L.R.P. performed biochemical and genetic analyses of Aca8 and derived mutants, developed methods for measuring calcium concentrations in vitro, and analysed biochemical and yeast complementation assays, supervised by M.G.P. A.A. performed bioinformatics sequence analysis, homology modelling and docking experiments. M.K. performed mathematical modelling, supervised by C.W. P.N. designed and supervised the project, and analysed results. H.T., L.R.P., A.A., M.G.P. and P.N. wrote the paper, and all authors commented on the paper.

Corresponding authors

Correspondence to Michael G. Palmgren or Poul Nissen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-10, Supplementary Tables 1-2 and additional references. (PDF 8599 kb)

Structural illustration of the proposed two-step, broad range Ca2+-mediated CaM-activation mechanism.

A homology model of ACA8 in surface representation color-coded based on sequence conservation (magenta = conserved / cyan = non-conserved) is shown with its regulatory domain docked against a conserved cleft only accessible in E2 conformation. With increasing Ca2+-concentration, Ca2+-CaM first binds and displaces high-affinity CaMBS1 allowing the pump to function at a basal rate (slow functional cycle) before even higher Ca2+-concentration leads to displacement of CaMBS2 from the catalytic core allowing free movement of the catalytic core as required for full ion pumping activity. Colour code of all components as in Fig. 1A. (MPG 3630 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tidow, H., Poulsen, L., Andreeva, A. et al. A bimodular mechanism of calcium control in eukaryotes. Nature 491, 468–472 (2012). https://doi.org/10.1038/nature11539

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11539

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing