Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mitochondrial Atpif1 regulates haem synthesis in developing erythroblasts

A Corrigendum to this article was published on 17 April 2013


Defects in the availability of haem substrates or the catalytic activity of the terminal enzyme in haem biosynthesis, ferrochelatase (Fech), impair haem synthesis and thus cause human congenital anaemias1,2. The interdependent functions of regulators of mitochondrial homeostasis and enzymes responsible for haem synthesis are largely unknown. To investigate this we used zebrafish genetic screens and cloned mitochondrial ATPase inhibitory factor 1 (atpif1) from a zebrafish mutant with profound anaemia, pinotage (pnt tq209 ). Here we describe a direct mechanism establishing that Atpif1 regulates the catalytic efficiency of vertebrate Fech to synthesize haem. The loss of Atpif1 impairs haemoglobin synthesis in zebrafish, mouse and human haematopoietic models as a consequence of diminished Fech activity and elevated mitochondrial pH. To understand the relationship between mitochondrial pH, redox potential, [2Fe–2S] clusters and Fech activity, we used genetic complementation studies of Fech constructs with or without [2Fe–2S] clusters in pnt, as well as pharmacological agents modulating mitochondrial pH and redox potential. The presence of [2Fe–2S] cluster renders vertebrate Fech vulnerable to perturbations in Atpif1-regulated mitochondrial pH and redox potential. Therefore, Atpif1 deficiency reduces the efficiency of vertebrate Fech to synthesize haem, resulting in anaemia. The identification of mitochondrial Atpif1 as a regulator of haem synthesis advances our understanding of the mechanisms regulating mitochondrial haem homeostasis and red blood cell development. An ATPIF1 deficiency may contribute to important human diseases, such as congenital sideroblastic anaemias and mitochondriopathies.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Disruption of atpif1 in pinotage (pnttq209) produces hypochromic anaemia.
Figure 2: Functional characterization of the atpif1a gene.
Figure 3: Loss of Atpif1 produces a haemoglobinization defect in mammalian cells.
Figure 4: Atpif1 regulates haem synthesis by modulating Fech activity.


  1. Schultz, I. J., Chen, C., Paw, B. H. & Hamza, I. Iron and porphyrin trafficking in heme biogenesis. J. Biol. Chem. 285, 26753–26759 (2010)

    Article  CAS  Google Scholar 

  2. Iolascon, A., De Falco, L. & Beaumont, C. Molecular basis of inherited microcytic anemia due to defects in iron acquisition or heme synthesis. Haematologica 94, 395–408 (2009)

    Article  CAS  Google Scholar 

  3. Severance, S. & Hamza, I. Trafficking of heme and porphyrins in metazoa. Chem. Rev. 109, 4596–4616 (2009)

    Article  CAS  Google Scholar 

  4. Anderson, K. E., Sassa, S., Bishop, D. F. & Desnick, R. J. in The Online Metabolic & Molecular Basis of Inherited Disease (ed. Bishop, D. F. ) 1–153 (The McGraw-Hill Press, 2011)

    Google Scholar 

  5. Shin, J. T. & Fishman, M. C. From zebrafish to human: modular medical models. Annu. Rev. Genomics Hum. Genet. 3, 311–340 (2002)

    Article  CAS  Google Scholar 

  6. Ransom, D. G. et al. Characterization of zebrafish mutants with defects in embryonic hematopoiesis. Development 123, 311–319 (1996)

    CAS  PubMed  Google Scholar 

  7. Postlethwait, J. H. et al. Vertebrate genome evolution and the zebrafish gene map. Nature Genet. 18, 345–349 (1998)

    Article  CAS  Google Scholar 

  8. Campanella, M., Parker, N., Tan, C. H., Hall, A. M. & Duchen, M. R. IF1: setting the pace of the F1F0-ATP synthase. Trends Biochem. Sci. 34, 343–350 (2009)

    Article  CAS  Google Scholar 

  9. Ando, C. & Ichikawa, N. Glutamic acid in the inhibitory site of mitochondrial ATPase inhibitor, IF1, participates in pH sensing in both mammals and yeast. J. Biochem. 144, 547–553 (2008)

    Article  CAS  Google Scholar 

  10. Shaw, G. C. et al. Mitoferrin is essential for erythroid iron assimilation. Nature 440, 96–100 (2006)

    Article  ADS  CAS  Google Scholar 

  11. Houseley, J. & Tollervey, D. The many pathways of RNA degradation. Cell 136, 763–776 (2009)

    Article  CAS  Google Scholar 

  12. Campanella, M. et al. Regulation of mitochondrial structure and function by the F1F0-ATPase inhibitor protein, IF1 . Cell Metab. 8, 13–25 (2008)

    Article  CAS  Google Scholar 

  13. Richardson, D. R. et al. Mitochondrial iron trafficking and the integration of iron metabolism between the mitochondrion and cytosol. Proc. Natl Acad. Sci. USA 107, 10775–10782 (2010)

    Article  ADS  CAS  Google Scholar 

  14. Nilsson, R. et al. Discovery of genes essential for heme biosynthesis through large-scale gene expression analysis. Cell Metab. 10, 119–130 (2009)

    Article  CAS  Google Scholar 

  15. Walker, J. E. The regulation of catalysis in ATP synthase. Curr. Opin. Struct. Biol. 4, 912–918 (1994)

    Article  CAS  Google Scholar 

  16. Lanzilotta, W. N. & Dailey, H. A. Human ferrochelatase. In Handbook of Metalloproteins (ed. Messerschmidt, A. ) Vol. 4/5: 138–146 (John Wiley & Sons, 2011)

    Google Scholar 

  17. Lange, H., Kispal, G. & Lill, R. Mechanism of iron transport to the site of heme synthesis inside yeast mitochondria. J. Biol. Chem. 274, 18989–18996 (1999)

    Article  CAS  Google Scholar 

  18. Froschauer, E. M., Schweyen, R. J. & Wiesenberger, G. The yeast mitochondrial carrier proteins Mrs3p/Mrs4p mediate iron transport across the inner mitochondrial membrane. Biochim. Biophys. Acta 1788, 1044–1050 (2009)

    Article  CAS  Google Scholar 

  19. Park, D. et al. Continued clearance of apoptotic cells critically depends on the phagocyte Ucp2 protein. Nature 477, 220–224 (2011)

    Article  ADS  CAS  Google Scholar 

  20. Crooks, D. R., Ghosh, M. C., Haller, R. G., Tong, W. H. & Rouault, T. A. Posttranslational stability of the heme biosynthetic enzyme ferrochelatase is dependent on iron availability and intact iron-sulfur cluster assembly machinery. Blood 115, 860–869 (2010)

    Article  CAS  Google Scholar 

  21. Medlock, A. E. & Dailey, H. A. Examination of the activity of carboxyl-terminal chimeric constructs of human and yeast ferrochelatases. Biochemistry 39, 7461–7467 (2000)

    Article  CAS  Google Scholar 

  22. Childs, S. et al. Zebrafish dracula encodes ferrochelatase and its mutation provides a model for erythropoietic protoporphyria. Curr. Biol. 10, 1001–1004 (2000)

    Article  CAS  Google Scholar 

  23. Hu, J., Dong, L. & Outten, C. E. The redox environment in the mitochondrial intermembrane space is maintained separately from the cytosol and matrix. J. Biol. Chem. 283, 29126–29134 (2008)

    Article  CAS  Google Scholar 

  24. Yu, D. et al. miR-451 protects against erythroid oxidant stress by repressing 14–3-3 ζ. Genes Dev. 24, 1620–1633 (2010)

    Article  CAS  Google Scholar 

  25. North, T. E. et al. PGE2-regulated wnt signaling and N-acetylcysteine are synergistically hepatoprotective in zebrafish acetaminophen injury. Proc. Natl Acad. Sci. USA 107, 17315–17320 (2010)

    Article  ADS  CAS  Google Scholar 

  26. Cao, Y. A. et al. Heme oxygenase-1 deletion affects stress erythropoiesis. PLOS One 6, e20634 (2011)

    Article  ADS  CAS  Google Scholar 

  27. Formentini, L., Sanchez-Arago, M., Sanchez-Cenizo, L. & Cuezva, J. M. The mitochondrial ATPase inhibitory factor 1 triggers a ROS-mediated retrograde prosurvival and proliferative response. Mol. Cell 45, 731–742 (2012)

    Article  CAS  Google Scholar 

  28. Sheftel, A. D., Richardson, D. R., Prchal, J. & Ponka, P. Mitochondrial iron metabolism and sideroblastic anemia. Acta Haematol. 122, 120–133 (2009)

    Article  CAS  Google Scholar 

  29. Camaschella, C. Hereditary sideroblastic anemias: pathophysiology, diagnosis, and treatment. Semin. Hematol. 46, 371–377 (2009)

    Article  CAS  Google Scholar 

  30. Li, L. & Kaplan, J. A mitochondrial-vacuolar signaling pathway in yeast that affects iron and copper metabolism. J. Biol. Chem. 279, 33653–33661 (2004)

    Article  CAS  Google Scholar 

Download references


We thank members of our laboratory (M. Cassim, A. Kaplan, G. Hildick-Smith and H. Anderson) and colleagues (S. L. Alper, K. Pepper and N. S. Trede) for critical review of the manuscript, T. C. Law for pnt adult blood characterization, H. Mulhern for help with the electron microscopy, and Christopher Lawrence and his team for the zebrafish husbandry. This research was supported in part by the Cooley’s Anemia Foundation (D.I.S. and C.C.), the March of Dimes Foundation (B.H.P.), the American Heart Association (J.D.C. and A.E.M.), the Dutch National Science Fund (I.J.S.), the Fondation Soldati pour la Recherche en Cancerologie (G.V.), the Burroughs Welcome Fund (N.N.D.), the NIDDK (D.I.S., B.H.P., A.N., J.K., H.A.D. and S.M.H.) and the NHLBI (D.I.S. and B.H.P).

Author information

Authors and Affiliations



D.I.S. and B.H.P. originally conceived the project, designed and performed the experiments, analysed data and wrote the manuscript. N.T.-M., A.S., L.L., D.M.W. and J.K. measured 59Fe uptake in mitochondria and complexed in haem, PPIX levels, Fech activity, xanthine oxidase and aconitase activities and the haem levels in a yeast knockout for Inh1 and participated in scientific discussions. J.D.C., I.J.S., E.L.P. and N.B.L. did zebrafish embryo microinjections. S.K.H., G.V., C.C. and W.C. helped with zebrafish colony maintenance and protein experiments. Y.Z. helped with high resolution meiotic mapping. A.N., S.N.H. and B.L.E. helped with silencing ATPIF1 in human primary CD34+ cells. S.M.H. helped with silencing Atpif1 in MFPL cells. A.E.M., T.A.D. and H.A.D. created Fech constructs for injection, measured Fech activity as a function of pH, analysed Fech structure for [2Fe–2S] clusters and participated in scientific discussions. D.F., J.M.W., M.C. and N.N.D. helped to design and measure mitochondrial physiological parameters. C.B. analysed pnt adult blood parameters. D.R.C. and M.D.F. helped with electron microscopic analysis of mitochondrial structure and disease.

Corresponding authors

Correspondence to Harry A. Dailey, Jerry Kaplan or Barry H. Paw.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Sequences are available in GenBank/EMBL/DDBJ as follows: zebrafish atpif1a (NM_001089521.1), zebrafish atpif1b (NM_001044859), mouse Atpif1 (NC_000070.5) and human ATPIF1 (NC_005104.2).

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-7, Supplementary Methods, a Supplementary Discussion and Supplementary References. (PDF 1249 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shah, D., Takahashi-Makise, N., Cooney, J. et al. Mitochondrial Atpif1 regulates haem synthesis in developing erythroblasts. Nature 491, 608–612 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing