Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Compensatory dendritic cell development mediated by BATF–IRF interactions

Abstract

The AP1 transcription factor Batf3 is required for homeostatic development of CD8α+ classical dendritic cells that prime CD8 T-cell responses against intracellular pathogens. Here we identify an alternative, Batf3-independent pathway in mice for CD8α+ dendritic cell development operating during infection with intracellular pathogens and mediated by the cytokines interleukin (IL)-12 and interferon-γ. This alternative pathway results from molecular compensation for Batf3 provided by the related AP1 factors Batf, which also functions in T and B cells, and Batf2 induced by cytokines in response to infection. Reciprocally, physiological compensation between Batf and Batf3 also occurs in T cells for expression of IL-10 and CTLA4. Compensation among BATF factors is based on the shared capacity of their leucine zipper domains to interact with non-AP1 factors such as IRF4 and IRF8 to mediate cooperative gene activation. Conceivably, manipulating this alternative pathway of dendritic cell development could be of value in augmenting immune responses to vaccines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Intracellular pathogens or IL-12 restore lymphoid CD8α + cDCs and tissue-resident CD103 + cDCs in Batf3 −/− mice.
Figure 2: IL-12-induced CD8α + cDCs in Batf3 −/− mice can cross-present and mediate tumour rejection.
Figure 3: Batf compensates for CD8α + cDC development in Batf3 −/− mice.
Figure 4: Batf2 compensates for Batf3 in CD8α + and CD103 + cDC development during T. gondii infection.
Figure 5: BATF leucine zipper interactions with non-AP1 factors mediate lineage-specific actions.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Data deposits

All original microarray data have been deposited in NCBI’s Gene Expression Omnibus under accession number GSE40647.

References

  1. Dorsey, M. J. et al. B-ATF: a novel human bZIP protein that associates with members of the AP-1 transcription factor family. Oncogene 11, 2255–2265 (1995)

    CAS  PubMed  Google Scholar 

  2. Wagner, E. F. & Eferl, R. Fos/AP-1 proteins in bone and the immune system. Immunol. Rev. 208, 126–140 (2005)

    CAS  PubMed  Google Scholar 

  3. Williams, K. L. et al. Characterization of murine BATF: a negative regulator of activator protein-1 activity in the thymus. Eur. J. Immunol. 31, 1620–1627 (2001)

    CAS  PubMed  Google Scholar 

  4. Echlin, D. R., Tae, H. J., Mitin, N. & Taparowsky, E. J. B-ATF functions as a negative regulator of AP-1 mediated transcription and blocks cellular transformation by Ras and Fos. Oncogene 19, 1752–1763 (2000)

    CAS  PubMed  Google Scholar 

  5. Schraml, B. U. et al. The AP-1 transcription factor Batf controls TH17 differentiation. Nature 460, 405–409 (2009)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ise, W. et al. The transcription factor BATF controls the global regulators of class-switch recombination in both B cells and T cells. Nature Immunol. 12, 536–543 (2011)

    CAS  Google Scholar 

  7. Hildner, K. et al. Batf3 deficiency reveals a critical role for CD8α+ dendritic cells in cytotoxic T cell immunity. Science 322, 1097–1100 (2008)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Edelson, B. T. et al. Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8α+ conventional dendritic cells. J. Exp. Med. 207, 823–836 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Betz, B. C. et al. Batf coordinates multiple aspects of B and T cell function required for normal antibody responses. J. Exp. Med. 207, 933–942 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Mashayekhi, M. et al. CD8a+ dendritic cells are the critical source of interleukin-12 that controls acute infection by Toxoplasma gondii tachyzoites. Immunity 35, 249–259 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Bar-On, L. et al. CX3CR1+ CD8α+ dendritic cells are a steady-state population related to plasmacytoid dendritic cells. Proc. Natl Acad. Sci. USA 107, 14745–14750 (2010)

    ADS  CAS  PubMed  Google Scholar 

  12. Behnke, M. S. et al. Virulence differences in Toxoplasma mediated by amplification of a family of polymorphic pseudokinases. Proc. Natl Acad. Sci. USA 108, 9631–9636 (2011)

    ADS  CAS  PubMed  Google Scholar 

  13. Ginhoux, F. et al. The origin and development of nonlymphoid tissue CD103+ DCs. J. Exp. Med. 206, 3115–3130 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Modlin, R. L. & Barnes, P. F. IL12 and the human immune response to mycobacteria. Res. Immunol. 146, 526–531 (1995)

    CAS  PubMed  Google Scholar 

  15. den Haan, J. M., Lehar, S. M. & Bevan, M. J. CD8+ but not CD8 dendritic cells cross-prime cytotoxic T cells in vivo. J. Exp. Med. 192, 1685–1696 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Wilson, N. S. et al. Systemic activation of dendritic cells by Toll-like receptor ligands or malaria infection impairs cross-presentation and antiviral immunity. Nature Immunol. 7, 165–172 (2006)

    CAS  Google Scholar 

  17. Aliberti, J. et al. Essential role for ICSBP in the in vivo development of murine CD8α+ dendritic cells. Blood 101, 305–310 (2003)

    CAS  PubMed  Google Scholar 

  18. Tailor, P., Tamura, T., Morse, H. C. & Ozato, K. The BXH2 mutation in IRF8 differentially impairs dendritic cell subset development in the mouse. Blood 111, 1942–1945 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Edelson, B. T. et al. Batf3-dependent CD11blow/− peripheral dendritic cells are GM-CSF-independent and are not required for Th cell priming after subcutaneous immunization. PLoS ONE 6, e25660 (2011)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Marquis, J. F., Lacourse, R., Ryan, L., North, R. J. & Gros, P. Disseminated and rapidly fatal tuberculosis in mice bearing a defective allele at IFN regulatory factor 8. J. Immunol. 182, 3008–3015 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Jackson, J. T. et al. Id2 expression delineates differential checkpoints in the genetic program of CD8α+ and CD103+ dendritic cell lineages. EMBO J. 30, 2690–2704 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Edelson, B. T. et al. CD8a+ dendritic cells are an obligate cellular entry point for productive infection by Listeria monocytogenes. Immunity 35, 236–248 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Su, Z. Z. et al. Cloning and characterization of SARI (suppressor of AP-1, regulated by IFN). Proc. Natl Acad. Sci. USA 105, 20906–20911 (2008)

    ADS  CAS  PubMed  Google Scholar 

  24. Ravasi, T. et al. An atlas of combinatorial transcriptional regulation in mouse and man. Cell 140, 744–752 (2010)

    CAS  Google Scholar 

  25. Brüstle, A. et al. The development of inflammatory TH17 cells requires interferon-regulatory factor 4. Nature Immunol. 8, 958–966 (2007)

    Google Scholar 

  26. Klein, U. et al. Transcription factor IRF4 controls plasma cell differentiation and class-switch recombination. Nature Immunol. 7, 773–782 (2006)

    CAS  Google Scholar 

  27. Tamura, T. & Ozato, K. ICSBP/IRF-8: its regulatory roles in the development of myeloid cells. J. Interferon Cytokine Res. 22, 145–152 (2002)

    CAS  PubMed  Google Scholar 

  28. Sciammas, R. et al. Graded expression of interferon regulatory factor-4 coordinates isotype switching with plasma cell differentiation. Immunity 25, 225–236 (2006)

    CAS  PubMed  Google Scholar 

  29. Glasmacher, E. et al. A genomic regulatory element that directs assembly and function of immune-specific AP-1-IRF complexes. Science (in the press)

  30. Li, P. et al. BATF–JUN is critical for IRF4-mediated transcription in T cells. Nature https://doi.org/10.1038/nature11530 (19 September 2012)

  31. Brass, A. L., Zhu, A. Q. & Singh, H. Assembly requirements of PU.1-Pip (IRF-4) activator complexes: inhibiting function in vivo using fused dimers. EMBO J. 18, 977–991 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen, L., Glover, J. N., Hogan, P. G., Rao, A. & Harrison, S. C. Structure of the DNA-binding domains from NFAT, Fos and Jun bound specifically to DNA. Nature 392, 42–48 (1998)

    ADS  CAS  PubMed  Google Scholar 

  33. Eisenbeis, C. F., Singh, H. & Storb, U. Pip, a novel IRF family member, is a lymphoid-specific, PU.1-dependent transcriptional activator. Genes Dev. 9, 1377–1387 (1995)

    CAS  PubMed  Google Scholar 

  34. Heng, T. S. & Painter, M. W. The Immunological Genome Project: networks of gene expression in immune cells. Nature Immunol. 9, 1091–1094 (2008)

    CAS  Google Scholar 

  35. Ranganath, S. et al. GATA-3-dependent enhancer activity in IL-4 gene regulation. J. Immunol. 161, 3822–3826 (1998)

    CAS  PubMed  Google Scholar 

  36. Gorman, J. R. et al. The Igκ enhancer influences the ratio of Igκ versus Igλ B lymphocytes. Immunity 5, 241–252 (1996)

    CAS  PubMed  Google Scholar 

  37. Iiizumi, S. et al. Simple one-week method to construct gene-targeting vectors: application to production of human knockout cell lines. Biotechniques 41, 311–316 (2006)

    CAS  PubMed  Google Scholar 

  38. Edelson, B. T. et al. CD8a+ dendritic cells are an obligate cellular entry point for productive infection by Listeria monocytogenes. Immunity 35, 236–248 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Mashayekhi, M. et al. CD8a+ dendritic cells are the critical source of interleukin-12 that controls acute infection by Toxoplasma gondii tachyzoites. Immunity 35, 249–259 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Edelson, B. T. et al. Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8α+ conventional dendritic cells. J. Exp. Med. 207, 823–836 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Saeij, J. P., Boyle, J. P., Grigg, M. E., Arrizabalaga, G. & Boothroyd, J. C. Bioluminescence imaging of Toxoplasma gondii infection in living mice reveals dramatic differences between strains. Infect. Immun. 73, 695–702 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Hildner, K. et al. Batf3 deficiency reveals a critical role for CD8α+ dendritic cells in cytotoxic T cell immunity. Science 322, 1097–1100 (2008)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Matsushita, H. et al. Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 482, 400–404 (2012)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Satpathy, A. T. et al. Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages. J. Exp. Med. 209, 1135–1152 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Schraml, B. U. et al. The AP-1 transcription factor Batf controls TH17 differentiation. Nature 460, 405–409 (2009)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li, C. & Wong, W. H. Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc. Natl Acad. Sci. USA 98, 31–36 (2001)

    ADS  CAS  PubMed  MATH  Google Scholar 

  47. Bending, D. et al. Highly purified Th17 cells from BDC2.5NOD mice convert into Th1-like cells in NOD/SCID recipient mice. J. Clin. Invest.. 119, 565–572 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ise, W. et al. The transcription factor BATF controls the global regulators of class-switch recombination in both B cells and T cells. Nature Immunol. 12, 536–543 (2011)

    CAS  Google Scholar 

  49. Ranganath, S. et al. GATA-3-dependent enhancer activity in IL-4 gene regulation. J. Immunol. 161, 3822–3826 (1998)

    CAS  PubMed  Google Scholar 

  50. Sedy, J. R. et al. B and T lymphocyte attenuator regulates T cell activation through interaction with herpesvirus entry mediator. Nature Immunol. 6, 90–98 (2005)

    CAS  Google Scholar 

  51. Kanbe, E. & Zhang, D. E. A simple and quick method to concentrate MSCV retrovirus. Blood Cells Mol. Dis. 33, 64–67 (2004)

    CAS  PubMed  Google Scholar 

  52. Dignam, J. D., Lebovitz, R. M. & Roeder, R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11, 1475–1489 (1983)

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Szabo, S. J., Gold, J. S., Murphy, T. L. & Murphy, K. M. Identification of cis-acting regulatory elements controlling interleukin-4 gene expression in T cells: roles for NF-Y and NF-ATc. Mol. Cell. Biol. 13, 4793–4805 (1993); erratum. 13, 5928 (1993)

    CAS  Google Scholar 

  54. Eisenbeis, C. F., Singh, H. & Storb, U. Pip, a novel IRF family member, is a lymphoid-specific, PU.1-dependent transcriptional activator. Genes Dev. 9, 1377–1387 (1995)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Howard Hughes Medical Institute, National Institutes of Health (AI076427-02) and Department of Defense (W81XWH-09-1-0185) (K.M.M.), the American Heart Association (12PRE8610005) (A.T.S.), German Research Foundation (AL 1038/1-1) (J.C.A), American Society of Hematology Scholar Award and Burroughs Welcome Fund Career Award for Medical Scientists (B.T.E.), and Cancer Research Institute predoctoral fellowship (W.-L.L.). We thank the ImmGen consortium34, M. White for blastocyst injections and generation of mouse chimaeras, the Alvin J. Siteman Cancer Center at Washington University School of Medicine for use of the Center for Biomedical Informatics and Multiplex Gene Analysis Genechip Core Facility. The Siteman Cancer Center is supported in part by the NCI Cancer Center Support Grant P30 CA91842. IL-12 was a gift from Pfizer.

Author information

Authors and Affiliations

Authors

Contributions

R.T., W.-L.L., T.L.M. and M.M. performed experiments with Batf−/−, Batf2−/−, Batf3−/− and double-knockout mice; T.L.M. made and analysed all BATF mutants; J.A.R. aided with EMSAs; W.KC, J.C.A. and A.T.S. were involved with microarray analysis and generation of mutant mice. J.C.A. was involved in generating of Batf2−/− mice. B.T.E. was involved with L. monocytogenes analysis; N.M.K was involved with cross-presentation analysis. X.W. was involved with bioinformatic analysis; L.A.W. and C.L.S. were involved with M. tuberculosis infection; E.G. and H.S. helped to identify EMSA probes; P.L., W.L. and W.J.L. performed ChIP-seq and helped to identify EMSA probes; M.B. and L.D.S. aided with T. gondii infections; S.S.K.L., C.T.A. and R.D.S. aided with tumour models. H.S. and W.J.L. provided helpful discussions. K.M.M. directed the work and wrote the manuscript. All authors discussed the results and contributed to the manuscript.

Corresponding author

Correspondence to Kenneth M. Murphy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-15, Supplementary Table 1 and additional references. (PDF 5221 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tussiwand, R., Lee, WL., Murphy, T. et al. Compensatory dendritic cell development mediated by BATF–IRF interactions. Nature 490, 502–507 (2012). https://doi.org/10.1038/nature11531

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11531

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing