Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Zinc isotopic evidence for the origin of the Moon


Volatile elements have a fundamental role in the evolution of planets. But how budgets of volatiles were set in planets, and the nature and extent of volatile-depletion of planetary bodies during the earliest stages of Solar System formation remain poorly understood1,2. The Moon is considered to be volatile-depleted and so it has been predicted that volatile loss should have fractionated stable isotopes of moderately volatile elements3. One such element, zinc, exhibits strong isotopic fractionation during volatilization in planetary rocks4,5, but is hardly fractionated during terrestrial igneous processes6, making it a powerful tracer of the volatile histories of planets. Here we present high-precision zinc isotopic and abundance data which show that lunar magmatic rocks are enriched in the heavy isotopes of zinc and have lower zinc concentrations than terrestrial or Martian igneous rocks. Conversely, Earth and Mars have broadly chondritic zinc isotopic compositions. We show that these variations represent large-scale evaporation of zinc, most probably in the aftermath of the Moon-forming event, rather than small-scale evaporation processes during volcanism. Our results therefore represent evidence for volatile depletion of the Moon through evaporation, and are consistent with a giant impact origin for the Earth and Moon.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: δ 68 Zn versus δ 66 Zn for lunar, terrestrial and Martian samples.
Figure 2: Zinc isotopic composition of terrestrial, lunar, Martian and chondritic samples.
Figure 3: Zinc isotopic fractionation as a function of the fraction of Zn remaining during open-system Rayleigh distillation.


  1. Albarède, F. Volatile accretion history of the terrestrial planets and dynamic implications. Nature 461, 1227–1233 (2009)

    Article  ADS  Google Scholar 

  2. Wood, B. J. & Halliday, A. N. &. Rehkämper, M. Volatile accretion of the Earth. Nature 467, E6–E7 (2010)

    Article  CAS  Google Scholar 

  3. Humayun, M. & Clayton, R. N. Potassium isotope cosmochemistry: genetic implications of volatile element depletion. Geochim. Cosmochim. Acta 59, 2131–2148 (1995)

    Article  ADS  CAS  Google Scholar 

  4. Moynier, F., Albarède, F. & Herzog, G. Isotopic composition of zinc, copper, and iron in lunar samples. Geochim. Cosmochim. Acta 70, 6103–6117 (2006)

    Article  ADS  CAS  Google Scholar 

  5. Moynier, F. et al. Isotopic fractionation of zinc in tektites. Earth Planet. Sci. Lett. 277, 482–489 (2009)

    Article  ADS  CAS  Google Scholar 

  6. Ben Othman, D., Luck, J. M., Bodinier, J. L., Arndt, N. & Albarede, F. Cu–Zn isotopic variations in the Earth’s mantle. Geochim. Cosmochim. Acta 70, A46 (2006)

    Article  ADS  Google Scholar 

  7. Hartmann, W. & Davis, D. Satellite-sized planetesimals and lunar origin. Icarus 24, 504–515 (1975)

    Article  ADS  Google Scholar 

  8. Cameron, A. The origin of the Moon and the single impact hypothesis V. Icarus 126, 126–137 (1997)

    Article  ADS  Google Scholar 

  9. Yin, Q. et al. A short timescale for terrestrial planet formation from Hf-W chronometry of meteorites. Nature 418, 949–952 (2002)

    Article  ADS  CAS  Google Scholar 

  10. Touboul, M., Kleine, T., Bourdon, B., Palme, H. & Wieler, R. Late formation and prolonged differentiation of the Moon inferred from W isotopes in lunar metals. Nature 450, 1206–1209 (2007)

    Article  ADS  CAS  Google Scholar 

  11. Canup, R. Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature 412, 708–712 (2001)

    Article  ADS  CAS  Google Scholar 

  12. Ida, S., Canup, R. & Stewart, G. Lunar accretion from an impact-generated disk. Nature 389, 353–357 (1997)

    Article  ADS  CAS  Google Scholar 

  13. Pahlevan, K. & Stevenson, D. J. Equilibration in the aftermath of the lunar-forming giant impact. Earth Planet. Sci. Lett. 262, 438–449 (2007)

    Article  ADS  CAS  Google Scholar 

  14. Lodders, K. Solar System abundances and condensation temperatures of the elements. Astrophys. J. 591, 1220–1247 (2003)

    Article  ADS  CAS  Google Scholar 

  15. Albarède, F. The stable isotope geochemistry of copper and zinc. Rev. Mineral. Geochem. 55, 409–427 (2004)

    Article  Google Scholar 

  16. Moynier, F. et al. Nature of volatile depletion and genetic relations in enstatite chondrites and aubrites inferred from Zn isotopes. Geochim. Cosmochim. Acta 75, 297–307 (2011)

    Article  ADS  CAS  Google Scholar 

  17. Luck, J. M., Othman, D. B. & Albarède, F. Zn and Cu isotopic variations in chondrites and iron meteorites: early solar nebula reservoirs and parent-body processes. Geochim. Cosmochim. Acta 69, 5351–5363 (2005)

    Article  ADS  CAS  Google Scholar 

  18. Herzog, G. F., Moynier, F., Albarède, F. & Berezhnoy, A. A. Isotopic and elemental abundances of copper and zinc in lunar samples, Zagami, Pele's hairs, and a terrestrial basalt. Geochim. Cosmochim. Acta 73, 5884–5904 (2009)

    Article  ADS  CAS  Google Scholar 

  19. Neal, C. R., Taylor, L. A. & Schmitt, R. A. Paired lunar meteorites MAC88104 and MAC88105: a new “FAN” of lunar petrology. Geochim. Cosmochim. Acta 55, 3037–3049 (1991)

    Article  ADS  CAS  Google Scholar 

  20. Ding, T. P., Thode, H. G. & Rees, C. E. Sulphur content and sulphur isotope composition of orange and black glasses in Apollo 17 drive tube 74002/1. Geochim. Cosmochim. Acta 47, 491–496 (1983)

    Article  ADS  CAS  Google Scholar 

  21. Chou, C. L., Boynton, W. V., Sundberg, L. L. & Wasson, J. T. Volatiles on the surface of Apollo 15 green glass and trace-element distributions among Apollo 15 soils. Lunar. Planet. Sci. Conf. 6, 1701–1727 (1975)

    ADS  CAS  Google Scholar 

  22. Symonds, R. B., Rose, W. I., Reed, M. H., Lichte, F. E. & Finnegan, D. L. Volatilization, transport and sublimation of metallic and non-metallic elements in high temperature gazes at Merapi Volcano, Indonesia. Geochim. Cosmochim. Acta 51, 2083–2101 (1987)

    Article  ADS  CAS  Google Scholar 

  23. Sharp, Z., Shearer, C., McKeegan, K., Barnes, J. & Wand, Y. The chlorine isotope composition of the moon and implications for an anhydrous mantle. Science 329, 1050–1053 (2010)

    Article  ADS  CAS  Google Scholar 

  24. Giguere, T., Taylor, G. J., Hawke, B. & Lucey, P. G. The titanium contents of lunar mare basalts. Meteorit. Planet. Sci. 35, 193–200 (2000)

    Article  ADS  CAS  Google Scholar 

  25. Snyder, G. A., Taylor, L. A. & Neal, C. R. A chemical model for generating the sources of mare basalts: combined equilibrium and fractional crystallization of the lunar magmasphere. Geochim. Cosmochim. Acta 56, 3809–3823 (1992)

    Article  ADS  CAS  Google Scholar 

  26. Spicuzza, M. J., Day, J. M. D., Taylor, L. A. & Valley, J. W. Oxygen isotope constraints on the origin and differentiation of the Moon. Earth Planet. Sci. Lett. 253, 254–265 (2007)

    Article  ADS  CAS  Google Scholar 

  27. Reufer, A., Meier, M. M. M., Benz, W. & Wieler, R. A hit-and-run giant impact scenario. Icarus 221, 296–299 (2012)

    Article  ADS  Google Scholar 

  28. Hauri, E. H., Weinreich, T., Saal, A., Rutherford, M. & Van Orman, J. A. High pre-eruptive water contents preserved in lunar melt inclusions. Science 333, 213–215 (2011)

    Article  ADS  CAS  Google Scholar 

  29. Lodders, K. & Fegley, B. An oxygen isotope model for the composition of Mars. Icarus 126, 373–394 (1997)

    Article  ADS  CAS  Google Scholar 

  30. Moynier, F. et al. Volatilization induced by impacts recorded in Zn isotope composition of ureilites. Chem. Geol. 276, 374–379 (2010)

    Article  ADS  CAS  Google Scholar 

  31. Barrat, J. A. et al. Geochemistry of CI chondrites: major and trace elements, Cu and Zn isotopes. Geochim. Cosmochim. Acta 83, 79–92 (2012)

    Article  ADS  CAS  Google Scholar 

  32. Day, J. M. D. et al. Comparative petrology, geochemistry and petrogenesis of evolved, low-Ti lunar mare basalt meteorites from the La Paz icefield, Antarctica. Geochim. Cosmochim. Acta 70, 1581–1600 (2006)

    Article  ADS  CAS  Google Scholar 

  33. Warren, P. H. & Kallemeyn, G. W. in Proceedings of the NIPR Symposium on Antarctic Meteorites Vol. 4 91–117 (Nat. Inst. Polar Res., Tokyo, 1991)

    Google Scholar 

Download references


We thank the NASA curation staff, CAPTEM and the meteorite working group for samples. This work was supported by grants from the NASA LASER and Cosmochemistry programmes to F.M. (NNX09AM64G, NNX12AH70G) and J.M.D.D. (NNX11AG34G; NNX12AH75G) and from the Exobiology programme (NNX12AD88G) to F.M.

Author information

Authors and Affiliations



R.C.P. and F.M. performed zinc isotope and abundance measurements. All authors wrote the Letter and contributed to discussion and interpretation of results in the manuscript.

Corresponding author

Correspondence to Frédéric Moynier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Supplementary references. (PDF 181 kb)

Supplementary Data

This file contains Supplementary Table 1 which shows isotopic composition and concentration of Zn in lunar, martian and terrestrial igneous rocks and for chondrites. (XLSX 19 kb)

Supplementary Data

This file contains Supplementary Table 2 which shows MC-ICP-MS ThermoElectron Neptune Plus settings for the Zn isotope measurements at Washington University in St Louis. (XLSX 25 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Paniello, R., Day, J. & Moynier, F. Zinc isotopic evidence for the origin of the Moon. Nature 490, 376–379 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing